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Development of a Micromechanic Theory of 

Crack Initiation Under High-Cycle Fatigue 

I. Introduction 

More than 90% of catastrophic failures of airplane structures and engine parts occurring 

in practice are caused by fatigue of materials. Fatigue deformation proceeds in two stages: 

fatigue crack initiation and crack propagation. Crack propagation dominates the life of low cycle 

fatigue and crack initiation occupies about 80% of the life in high-cycle fatigue (HCF). Both low 

cycle and high cycle fatigue loadings commonly occur in practice. Initiation always proceeds 

propagation. Crack initiation has been studied by a number of distinguished scientists without 

complete success. Both crack initiation & propagation are important for the reduction of fatigue 

failures. Present study gives a development of a physics model of fatigue crack initiation and is 

of both scientific and practical importance. 

Single crystal tests ( Taylor, 1938) have shown that under stress, slip occurs along certain 

crystal directions on certain crystal planes. This shear stress along the crystal direction on this 

crystal plane is called the resolved shear stress. Slip depends on this resolved shear stress and is 

independent of the normal stress on the sliding plane. This shear stress to initiate or cause the 

continuation of slip is called the critical shear stress. This dependency of slip on this resolved 

shear stress is known as the Schmid's law and has been shown to hold also for cyclic loading 

(Parker, 1961). 

Since 1950's, many metallurgical researches on fatigue were undertaken. A 

formidable amount of experimental information is available. As indicated by Kennedy (1963), 

the difficulty seems to see these multitudinous facts as a related and connected whole, largely 

because of the lack of a sound general theory and also because of the very great complexity of 

metallurgical effects. With the development of dislocation theory since about 1940, new 

explanations of the fatigue theory have been proposed. Dislocation explains the characteristics of 

metals at the atomic level, which of course is very important. However, dislocations may be too 

fine to correlate even the macroscopic phenomena observed under optical microscope, such as 



fatigue bands. Plastic strain represents a large number of dislocations (Mura, 1982). Hence 

plastic strain is here used to explain the macroscopic phenomena. 

Forsyth & Stubbington (1954) made an important discovery of extrusions in slip bands 

during fatigue tests of some aluminum alloys. Since then, a number of distinguished 

investigators (Thompson et al (1955), Hull (1958) Mughrabi (1990), Mecke & Blockwitz (1980) 

etc) also reported detection of extrusion & intrusion in different metals. Following the clue 

provided by the observations of extrusions & intrusions in slip bands, a number of theories of 

fatigue crack initiation have been proposed (Mott (1958), Cuttrell & Hull (1957), Wood 1956, 

etc). For a dislocation to glide, first it has to glide in a crystal slip system and second the slip 

system must subject to a resolved shear stress equal or greater than the critical shear stress. The 

above mentioned and most of other theories mainly show the possible paths of dislocation 

movement to satisfy the first condition, but this resolved shear stress field caused by the 

dislocation movement was not adequately considered. In the micromechanic theory proposed by 

the writer and his associates, the effect of this stress field, which provides a natural gating 

mechanism is quantitatively shown. 



II-l. A Micromechanic Model of Shear Bands and Fatigue Bands 

When a piece of metal is uniformly loaded, slip lines appear on the surface. These slip 

lines are the results of highly localized plastic deformation. This raises the question of why 

under a uniform loading, the plastic strain is so heterogeneous. To explain the heterogeneous 

plastic deformation, the micromechanic shear stress field due to a uniform e"12 in a thin slice, 

Fig.la in a infinite isotropic medium is analyzed (Lin, 1992). Imagine that we cut the slice out 

and apply a uniform shear stress -2Gei'2, where G is the shear modulus, to restore the slice back 

to its original shape and size before the occurrence of the plastic strain as shown in Fig. lc and 

then welded back to the medium. Since there is no such applied stress, it is relaxed by applying 

an equal and opposite force of 2Ge12" per unit area of the boundary. Denoting the stress field 

caused by this boundary force by x\, the residual shear stress field T« due to this plastic strain is 
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Figure 1 Shear Band model 

rr=r;-2G4 

and has been found to be, writing e'n as e , 

r _ 2A»V  I (^I-^)[(^-^)
2
-JC2

2
]      (X, + 0?)[(X, + df - x\ 

T   = 
JT(I-V) {x.-df+xl (x, + d)2 + x2 

(1) 

(2) 



This model was ingeniously given by Eshelby (1951) in his paper on the determination of the 

elastic field of an ellipsoidal inclusion. The resolved shear stress due to an edge dislocation along 

x3 -axis with its Burger's vector along x, -direction is given by Hirth & Lothe(1968) as 

T = - 
jA xx(xj-xl) 

2^(1-v)    Xy+xl 
(3) 

Substituting 2we" in Eq.2 by the magnitude of the Burger's vector b, it is seen that the 

resolved shear stress caused by this displacement of the edge dislocation of the Burger's vector 

from (-d,0) to (d,0) is exactly the same as given by Eq.3. Hence the plastic strain in this slice can 

be provided by the displacement of dislocations. The equivalence of plastic strain and dislocation 

distribution has been shown by Mura (1981) and others. Hence a plastic strain distribution in a 

solid can also be represented by a distribution of dislocations. 

Along x,-axis, Eq.2 gives x =■ . When x, >d or x<-d, Tris 
n(\-v)(x,+d)){xx-d) 

positive. This increases the resolved shear stress and causes the length of the sliding rectangle to 

increases. 

Along x2 -axis, the shear stress rr, relieved by e" reduces to 

rr = 
AGe w 

x(\-v)d 

(    x2 

V 

x 

~d 
21 -l 

[tew. 
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The relief of stress rr is proportional to e"(—). To relieve a finite value of shear stress rr, 
d 

e  has to be large since (—) is very small. This explains the formation of the localized plastic 
d 

strain to give a shear band under a monotonic loading. This equation also gives a negligible 

variation of this relief of shear stress across the thickness. This provides a natural gating 



mechanism as shown later. The above plastic deformation behavior applies to polycrystals as 

well as single crystals 
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Fig.2 Fatigue Band Model of an Extrusion 



Forsyth and Stubbington (1955) discovered that thin ribbons protruding out of the surface 

of fatigue specimens. These protruding ribbons are known as extrusions. Negative extrusion, 

called intrusion was also observed. Based on these observations, a physical model of fatigue 

crack initiation was proposed. This model for a polycrystal (Lin, 1992) is shown in Fig.2. The 

formation of an extrusion requires a positive shear strain eaß in P on the top and a negative shear 

strain in Q on the bottom of the extrusion R, Fig.2c. This can be caused by a positive initial 

resolved shear stress r' in P and a negative initial stress in Q. This system of initial resolved 

shear stress in a segment can be caused by a variation of compressive stress in R, as shown in 

Fig.2(b). 

Fig.3 A Dislocation Interstitial Dipole 

If we cut a slit through a perfect crystal and force a sheet of metal of one atom thick into 

the slit, a pair of parallel edge dislocations of opposite signs, forming an interstitial dipole, is 

produced as shown in Fig.3, where Ya denotes the gliding direction and Yp denotes the normal to 

the slip plane. If we cut a rectangular block along the dotted line, the free length of this block 

will be one atomic spacing more than the corresponding length of the hole. If there are n such 

dipoles in a length of N atomic spacing, this will give an initial strain e'aa of n/N. Hence, this 

initial strain can be caused by an array of dislocation dipoles. This array of dipoles was 

suggested by Lin and Ito (1969) as a possible way of providing the initial strain to cause the 



favorable initial stress field. Recently, Mughrabi et al.(1979) have shown that the ladder structure 

in a persistent slip band (Fig.4) can be represented by such an array of dislocation dipoles. 

PSö 

Fig.4 Dislocation arrangement in fatigued copper single 

Crystal (121)-section showing matrix(M) and persistent 

slip bands (PSB). Reproduced from ASTM STP675,1975 . 

Hence,this system of initial shear stress can be caused by an array of dislocation dipoles (Lin, 
1992). 

II-2. Gating Mechanism Provided by Stress Field 

With an initial tensile strain in R (Figure 2), the initial shear stress T'P in P, is positive and 

that in Q, T'Q , is negative. The shear stress due to the applied load a22 is the same in the whole 

crystal, thus T" = xa
Q = ra. Consider the following sequence of loadings : 

1.    First Cyclic Forward Loading (T
a > 0): P slides. The residual shear stress in P during the 

first forward loading t[f < 0. Therefore 

Tp=Ti
p+Ta+ T^ = TC 

TQ+ra+<jQ>-Tc 

(5a) 

(5b) 

2.  First Cyclic Reverse Loading(T
a < 0): Q slides, r[rQ > 0. Therefore, 



Tp = Tp + Ta + T[jp + Tr
lrP < TC (6a) 

TQ=Ti
Q+Ta+ Tr

w + T[rQ = -TC (6b) 

3. Second Cyclic Forward Loading (ra > 0): P slides, xr
2fP < 0. Therefore, 

Tp=z'p+Ta + z[jp + r[rP + Tr
2JP = Tc (7a) 

TQ=Ti
Q+Ta+ Tr

w + T[rQ + Tr
2JQ > -TC (7b) 

4. Second Cyclic Reverse Loading (ra < 0): Q slides, t[rQ > 0. Therefore, 

Tp=Ti
p+Ta+ Tr

xip + T[rQ + Tr
2Jp + Tr

2rQ < TC ' (8a) 

TQ = TQ + T" + Tr
lJp + x[rQ + Tr

2Jp + Tr
2rQ = -TC (8b) 

This process is repeated. In the above rc is constant. This represents zero strain hardening 

For the cases with strain hardening or softenning, T
C
 increases or decreases with plastic strain. 

Fig.5. (a) Sharp X-ray reflection from annealed a -brass, (b) From same specimen as (a) 

after a unidirectional strain 150xo.5° twist, (c) From same specimen as (a) after 1500 

reversals of plastic strain o.5° twist and showing same reflections as (a). Reproduced 

from the book "Fracture," 1959, courtesy of Technological Press, MIT. 

The residual shear stress occurred during forward loading is negative and occurred in the 



negative loading is positive. Considering the incremental plastic strain Ae" in P, x2 = 0 in P and 

x2 = fin Q, where t is the thickness of R. Eq.4 gives a residual stress in P to be more than that in 

Q by a very small amount. In the reversed loading, negative slip occurs in Q. This gives a 

residual stress rr in Q to be numerically a very small amount more than rr in P. The build-up 

of the slip strain el
aß in P and Q is caused by e'm in R. If R were cut out, the free length of R 

would be longer than the slot by an amount referred to as the static extrusion by Mughrabi et al. 

(1983). This e'aa causes an initial compression T'aa in R. Under cyclic loading, the extrusion 

grows and the thin slice R increases in length. This elongation causes the compression to 

decrease. The change of the direct stress raa in R causes changes of resolved shear stress in all 

slip systems in a f.c.c.-crystal. When the decrease of compression in R becomes large after 

millions of cycle, its 

Fig.6(a) Initially straight scratches a, b, c 

are displaced unidirectionally by 

Static slip band AB. Reproduced 

from Trans. Metal Soc. AIME, 1992, 
courtesy of AIME. 

Fig.6(b) Cyclic slip band CD produces 

no overall displacement of scratches d, 

e, f within the slip band; the scratches are 

displaced equally backward and forward. 

The same as Fig.6(a), courtesy of AIME. 

resulting residual stresses combined with the applied stress can cause a second slip system to 

have shear stress reaching the critical and slides. Let this second system be denoted by £77. The 

plastic strain e^ caused by this slip has a tensor component eaa, just like e'aa in causing the 



positive and negative rl
aß in P and Q, respectively. Hence, with secondary slip the extrusion can 

grow considerably beyond the static extrusion as shown in Fig.23 in (Lin, 1992). 

Now R is subject to a static axial loading due to taa superposed on a cyclic axial stress due 

to + a22. It has been found that this region of the secondary slip grows with cycles of loading. 

II-3. Experimental Verifications 

The preceding theory has extensive experimental evidences. Some of these are briefly 

shown in the following. Tests on single aluminum crystals under cyclic loading in tension and 

compression by Buckley & Entwistle (1956) and Charsley & Thompson (1965) on an aluminum 

crystal show that slip lines formed during compression lie between those formed in the prior 

tensile loading. Many other tests also show the occurrence of slip lines in the reversed loading to 

be very close, but distinct from those formed in forward loading like P and Q in the proposed 

model. Wood (1956) has shown the X-ray reflection patterns of monotonically and cyclically 

loaded specimens to be quite different as shown in Fig.5. The latter retain the discrete spots like 

that of an annealed metal while the former do not. This shows that at some distance from the 

fatigue band, the stress field caused by the positive slip in P is balanced by that of the negative 

slip in Q. Under the monotonic loading, the slips in all slip lines are of the same sign and causes 

a significant lattice strain in the bulk of the metal. This is explained by the proposed model. 

Wood & Bender tested copper crystal rod under torsion. Some specimens were subject to single 

torsion and some are subject to cyclic torsion. They found that under a monotonic loading, 

scratches are discontinuous across this shear band, while under a cyclic loading, scratches have 

no relative displacement across this fatigue band except in the small region near the band, Fig.6. 

These observations clearly verify the proposed model. The detail of these tests are given in the 

reference (Lin, 1992). 

This model shows that P slides only in forward loading and Q only slides in reversed 

loadings. The macroscopic positive shear strain eaß in the specimen caused by P sliding is 

balanced by the negative shear strain in Q. This gives a macroscopic reversed strain as observed. 

10 



The highly local positive shear strain eaß in P and negative shear strain in Q causes the 

formation of fatigue band. This shear strain at the free surface causes the monotonic growth of 

extrusion. If the interstitial dipoles were replaced by vacancy ones, intrusion instead of 

extrusions would occur. The mechanism of shear band and fatigue band developed for 

polycrystals under HCF is presently applied to single crystals. 

IH. Micromechanic Analysis of Fatigue Band of Single Crystal 

Mecke and Blockwitz (1980) observed the subgrain displacement in a single nickel crystal 

under cyclic loading. Their experiments were carried out under constant plastic strain amplitude 

at room temperature. It is seen that the PSBs have penetrated across the whole crystal and 

extruded out on both sides as shown in Fig.7. 

PSB PSB    PSB 

Fig.7 Extrusions observed in single crystal. (Meke and Blochwitz, 1980) 

As shown previously, the length of a rectangular slice with a uniform plastic shear strain 

tends to increase. This increases the lengths of both P and Q. Hence this present model of P, Q 

and R can give the fatigue band to extend the extrusion out of the two surfaces of the single 

crystal. Copper single crystal test data are much more abundant than those of aluminum (Ma & 

Laird, 1989; Basinski & Basinski, 1992; Mughrabi et al., 1983). The anisotropy of elastic 

constants of aluminum is much less than that of copper. The micromechanic analysis of fatigue 

11 



L 

band in a crystal with anisotropic constant is much more complex than that with isotropic one 

(Teng and Lin, 1995). In our present analysis, the crystal is taken to be elastically isotropic. As 

the loading cycles increase^, the number of fatigue bands increases. These bands interact with 

each other. This interaction needs to be considered. Hence in the present study, the 

micromechanic analysis of an aluminum single crystal with multiple fatigue bands is performed. 

The microstress-strain fields vary along three axes. The elasto-plastic 3-dimensional analysis is 

very complicated. And Boundary Element Method is chosen for the computation. 

III-l. Method of Numerical Analysis 

Elasto-plastic Boundary Element Method is applied to the elasto-plastic 3-dimensional solid 

of heterogeneous isotropic elastic constants. Consider a body under equilibrium with two sets of 

stresses and strains. Referring to a set of rectangular coordinates, the stress is denoted by <r,yand 

strain by etj. The displacement along the xi -axis is denoted by M, . The equilibrium condition is 

expressed as ayj +f, =0, where^is the body force per unit volume along x,-direction. The 

comma after j denotes differentiation along j-axis and the repetition of the subscript denotes 

summation from one to three. 

\ .du,    du.       ,      „ 
e  =—(—- + —-) = e +e (9) 

*   iKdxj   ax/   u   ,J 

The strain is composed of the elastic ei} and the plastic ey. The stress is related to the elastic 

strain by 

°ij=Cmeu (10) 

where CiJkl 's are the elastic constants. 

The other set of stresses and strains are denoted by subscript * 

12 



For a homogeneous isotropic medium 

Cyu = töijöu + ß(Siköß + 8HöJk ) (12) 

where Sy is the Kronecker delta. X and ju are Lame's constants. 

From the above, we can write 

\aye'ydQ. = jC^e'ydQ = \CijkleyekldO. = j(rue'udQ (13) 
an n n 

where fi denotes volume of the solid. This gives the reciprocal relation for elastic bodies. 

Replacing e'y by ey -ey and using divergence theorem, we obtain 

J»,Äi + \s*utdT - \aleydQ = jfrfdQ + jSrfdT (14) 
n r n a r 

where T denotes the surface. 

Let /„* be a unit delta function in the xn -direction at point x , 

/■ = 5n (x, x )        i.e.: JS„ (x, x')dQ = 1 (15) 
n 

From Kelvin's solution of a constant force along xn -direction applied in an infinite 

homogeneous isotropic medium 

u'(x,xk) = A[ BSa\jJ-Uj (xk -xk) ] (16) 

13 



where A=        +M £ = A±^s   r = )(x, -x\f + (x2 -x2)
2+(x3 -x3)

2 (17) 

From the expression of displacement u* we obtain strain e* and the stress er*. Noting the 

surface traction on the surface with normal rjj, we obtain 

CkJUj(x,e)+ |5;(x,x')W,.(x,e")rfT = \<r]j(x,xk)eijdQ.+ Js, fre'^'dr (18) 

where    Ckj = - 
1 for k = j and 8 k (x') applied inside body 

0.5 for k = j and 5t(x') applied on smooth surface (19) 
0 for k * j 

The above shows the method to calculate the microscopic stress and strain fields, the 

average of which give the macroscopic stress and strain, and hence the hysteresis loops of the 

crystal. 

III-2. Recent Aluminum Single Crystal Data 

Recently, Zhai et al (1992,1996) have shown a set of excellent fatigue data of aluminum single 

crystals under stress-controlled loadings. The specimen has two special surfaces: One is the side 

surface containing the active Burger's vector, the other is the front surface perpendicular to the 

side surface and having the largest slip steps under fatigue. The specimen was loaded in equal 

cyclic tension and compression. The preferred slip system is [011](111). The PSB's on the front 

surface were of the same size and distribution as those on the side surface. Many PSB's on the 

side surface were concave. The extrusion on the front surface was found to be continuous with 

the intrusion on the side surface as shown in Fig.8. The present model predicts these 

experimental observations. This micromechanic model is verified to such detail. Hence the 

validity of this theory is reassured. 

14 



Fig.8 SEM micrograph showing the topographies of the area around the common edge of 

the front-surface(in the top) and side-surface(in the bottom) in specimen 1 at 1.2 x 106 

cycles. The dark bands on the side-surface and the PSBs on the front-surface meet at the 

edge, including that the drak bands on the side-suface correspond to the PSBs. 

15 



III-3 Numerical Results 

The dimensions of the specimen to be analyzed are shown in Fig.9. The specimen is taken 

to be of pure aluminum with a critical shear stress T
C
 of 0.369 MPa(53 p.s.i) and is loaded under 

uniform tensile and compressive stress of 0.9x0.369 MPa. 

In the present analysis, the multiple fatigue bands were assumed to be 1 fjm across each 

band and have 5 jum spacing. These are similar to those in Zhai et al.'s. 

Front 

Surface 

Fig.9 Dimensions of the specimen to be analyzed 

From Eq.5 to Eq.8, the residual stress rr depends on the initial stress r'. Two sets of initial 

stresses of the same average values in each of the four segments P, P1, Q and Q' (Fig. 2) were 

calculated under the same cyclic loading: one with a linear initial stress giving hysteresis loops 

shown in Fig. 10 and the other with a uniform distributed one giving hysteresis loops shown in 

Fig.ll. It is seen that one with uniform initial shear stress reaches the saturation value of 

cumulating plastic strain much sooner than the one with linear initial stress. The initial shear 

stress r' is generally heterogeneous. Let Tl
Pm& denote the maximum initial stress. During the 

forward loading, when thisrj,,^ +ra = rc in some region, this region slides and yields plastic 

strain. This loading give the elastic limit of the specimen. As the forward loading increases, more 

16 
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Fig. 10 Hysteresis Loops of a Crystal with linear distributed initial shear stress 

€   *-|o3 

22 

regions slide. This gives the curved part of the stress-strain curve. The residual stress in P and Q 

are negative to relieve the shear stress in P, but increases the negative shear stress in Q. Thus 

negative shear stress causes Q to slides easier in the reverses loading. This is known as the 

Bauchinger Effect. Further negative loading gives the curved part of the negative stress-strain 

curve until the maximum negative loading is reached. Then the forward loading gives the linear 

stress-strain curve followed by a curved part of the hysteresis loop until the maximum forward 

loading is reached. As explained before, the negative residual stress rr
p is built-up in P and the 

positive residual stress rr
Q in Q. These residual stresses tend to cancel the initial shear stress T' 

in P and Q. This process produces an extrusion, which causes a steady tensile stress 

Tr
aa combining with the cyclic axial stress caused by ± cr22 in R. This causes R to be under a 

cyclic loading with a mean stress. 

17 
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Fig.l 1 Hysteresis Loops of a Crystal with uniform initial shear stress 

The calculated extrusion height in the present analysis exceeds OJum, which agrees with 

that observed by Zhai et al. This is taken as the extrusion height in saturation. The present model 

seems to be able to explain a number of experimental observations. T-he-above-analysis is for-a- 

constant^^dKc-axiaJ loadmg^Experimentally^4^ 

increases meiMgue-Ufe. The^e~two-e£fects=sse^oi 

In the present project, ending on 6/30/99, based on some previous work of the writer on 

micromechanics of HCF, we have developed the quantitave physical theory of HCF of fee. 

polycrystal, as described in section II-2. We have also developed the micromechanic analysis of 

the hysteresis loops of single crystals. This fatigue theory satisfies the conditions of stress 

equilibrium and displacement continuity throughout the metal. This model clearly represents 

much more realistically the actual deformation of the single and the polycrystals. 

IV. Suggested Future Studies 

The basic variables in HCF have been identified as shown in the previous sections. We 

have been considering the fatigue at very low loading amplitude and have assumed that fatigue 

band occurs only in the most favorably oriented crystal in a polycrystal. Higher loading 

amplitude often occurs in practice and causing fatigue bands to occur in other crystals. The 

interaction of fatigue bands in few crystals needs to be considered. This needs a micromechanic 

18 



analysis of polycrystal stress and strain fields in the early stage of plastic deformation. A 

physical model of this analysis was proposed by the writer (Lin, 1971). This analysis is to be 

further developed for fatigue bands developed beyond the most favorably oriented crystals. 

High temperature strength of some ordered superalloys has made them attractive for use in 

structures subject to high temperature such as rockets and gas turbines. When these alloys are in 

polycrystal form, intergranular cracks frequently develop under loading. In order to avoid these 

brittle intercrystalline cracks, these alloys, such as GE's Rene N-4 and Pratt-whitney's PWA- 

1450, in single crystal form have been used in gas turbines. The design of these requires the 

constitutive relation of this single crystal alloy. At low and intermediate temperatures, these 

nickel-based superalloys generally are in disordered form and plastically deformed through 

-<110>{111} slip. If this slip occurs in superalloys in ordered form, this slip will leave a plane 

of anti-plane boundary APB in the wake (Pope and Ess, 1984). The energy required to create 

such a fault is high. This causes large resistance to this slip and causes cross-slip or multiple slip 

to be difficult. The APB energy is anisotropic, being smaller on the cube-plane than on an 

octahedral plane. These screw dislocations tend to cross-slip from the octahedral plane, where 

the APB energy is high to the cube planes where it is low. The pinning of the screw dislocations 

on the cube planes impedes the motion of the primary octahedral screw dislocations and raises 

the flow stress in the octahedral system (Walker and Jordan, 1989). The rate at which the screw 

dislocations cross-slip and become pinned is governed by a diffusives process, which is 

dependent on temperature. Hence the octahedral flow stress increases with temperature. This 

property is highly desirable for those parts subject to high temperature and hence is used in 

turbine parts. The active slip system changes with temperature. To design such parts, the stress- 

strain relationship with variation in temperature is needed. 

Walker and Jordan(1989) developed a constitutive relation of a superalloy single crystal 

assuming a relation similar to the unified isotropic viscoplastic model (Lindholm et al, 

1994,1995). They have made good progress to this very difficult problem. However their model 

did not consider the heterogeneity of stress and strain in the single crystal described in Section III 

and did not give the stress-strain relations under non-proportional loading. The present 

micromechanic model of fatigue band considering the heterogeneity   of plastic deformation 
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based on the experimental observations and is clearly much more realistic than the 

phenomenological model based on the unified viscoplastic constitutive model. This constitutive 

relation to be derived will be compared to the experimental data. It is expected that the 

agreement between these analytical and experimental results will be much better than the 

previous models. This present theory satisfies the stress equilibrium, displacement continuity and 

numerous experimental observations of fatigued single crystals and polycrystals. This research 

should give significant benefits to our industry and contribute greatly to the advance of science 

in the fatigue models. 
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Abstract 
Multi-directional fiber-reinforced composites are often 
used in aerospace structures. The design of such struc- 
tures needs a realistic macroscopic stress/strain relation- 
ship for the composite material. In this paper an 
analytical approach for determining this stress/strain 
relationship is developed which is based on detailed ana- 
lysis of the microscopic stress/strain fields, which govern 
the spread of plastic strain and the amount of material 
damage. In this approach, the heterogeneous composite is 
transformed into a homogeneous solid by Eshelby's 
equivalent-inclusion method (Mura, T., Micromechanics 
of Defects in Solids. Martinus Nijhoff, The Hague, 
1982)./ The microstresses and strains are then analyzed 
by using Lin's method of analyzing the microstress fields 
of elastically homogeneous poly crystals of periodic crys- 
tal orientations based on Green's functions of an infinite 
solid (Lin, T. H., Adv. Appl. Mech., 1971, 11, 255- 
311)? The major advantage of the present approach is 
that it does not need to isolate a representative volume (or 
'unit cell') and specify the unknown boundary conditions. 
A numerical example for a cross-plied boron/aluminum 
composite is given. © 1998 Elsevier Science Ltd. All 
rights reserved 

Keywords: C. residual stress, equivalent inclusion 
method, micromechanics, boundary conditions, Green's 
function 

1 INTRODUCTION 

Fiber-reinforced composites are used in aerospace 
structures where high strength and stiffness to weight 
ratios are needed. In designing structures with these 
composite materials, the macroscopic incremental 
stress/strain relationship and the macroscopic stiffness 
are required. Structural analyses give the macroscopic 

*To whom correspondence should be addressed. 

stress distributions in the structure. Material yielding 
generally starts at some localized high-stress region. 
However, local yielding does not cause failure. Failure 
occurs mostly when plastic strain spreads over a major 
part of the cross-section. To analyze this spread of 
plastic zone, the microscopic stress/strain is to be 
obtained at the regions of high macrostresses. This 
requires a macroscopic stress/strain relationship derived 
from microscopic stress/strain fields. 

Evaluation of the overall elastic stiffness properties of 
composites have been shown by Hashin and Shtrikman4 

and Hashin and Rosen5 and from the self-con- 
sistent approach by Hill,6 Budiansky,7 Walpole,8 

Willis,9 and Weng10 to give the bounds of the elastic 
stiffness. Teply and Dvorak" applied the minimum 
principles of plasticity12-13 to evaluate the upper and 
lower bound properties of elastic-plastic composites 
aggregates subjected to macroscopically uniform incre- 
mental stress and strain histories. Numerical calcula- 
tions can be greatly reduced if the composite can be 
considered to have a periodic microstructure. The peri- 
odic microstructure would require the fibers to be 
uniformly spaced. Scheirer and Toth14 have shown that 
such composites can be produced at high cost. 
For important structures such as hypersonic planes, 
such high cost may be justified. Considering a compo- 
site of periodic microstructure, Walker et al.is and 
Nemat-Nasser and Hori16 have elegantly shown the 
mathematics of the micromechanic analysis of such 
composites. 

Fiber and matrix have different elastic moduli, and 
the finite-element method (FEM) can handle these 
different moduli in different grids. Hence, the FEM 
is applicable to the stress analysis of composites in 
the same way as that of a single-phase material. 
Recently, Dvorak and his associates have made many 
important contributions to the understanding of the 
elastic-plastic behavior of composites. In 1985, 
Dvorak and Teply17 have used the FEM to obtain esti- 
mates of local stress and strain fields as well as the 
bounds on the instantaneous moduli of elastic-plastic 
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uniaxial fiber reinforced composites. In 1994, Dvorak 
et a/.18 applied Eshelby's equivalent inclusion method1 

to a unit cell subject to the boundary condition of 
uniform macroscopic strain. In their analysis, the 
representative volume of the heterogenenous medium is 
divided into a number of phases, each of which can have 
a different elastic moduli and different eigenstrains. 
They assumed a macroscopically homogeneous 
response under macroscopically uniform overall stress 
or uniform overall strains, prescribed through surface 
tractions or displacements specified on the surface of the 
representative volume. When the phase eigenstrains are 
present, they further assume that if the surface is free of 
tractions, the displacements on the surface are consistent 
with a macroscopically uniform overall strain. Their 
results agree with those obtained by FEM. As will be 
shown later, these assumptions are removed in the present 
model. 

Referring to the analysis of a periodic composite, in 
1990, Adams3 indicated 'a major problem in currently 
modeling composite material behavior is adequately 
representing the complex boundary condition that are 
introduced when a local material region is isolated for 
analysis'. This seems to indicate some difficulty in spe- 
cifying the boundary conditions in analyzing the unit 
cell, especially for composites of cross-ply fibers under 
combined shear and biaxial loadings. 

Lin2 considered a polycrystal composed of innumer- 
ous identical cubic blocks embedded in an infinite elastic 
medium subject to loadings applied at infinity. The 
stress/strain relationship of the center block was taken 
to represent the macroscopic stress/strain relationship 
of the polycrystal. Since there are innumerable identical 
cubic blocks, the plastic-strain distribution in the crys- 
tals surrounding the center block are taken to be the 
same as that in the center block. The interaction of the 
plastic strain in the surrounding blocks on the stresses in 
the center block is readily calculated using Kelvin's 
solution of stress field caused by a concentrated force in 
an infinite isotropic elastic medium.19 For a polycrystal 
of repeated cubic blocks, i.e. of a periodic micro- 
structure, Wu20 and Hill21 have shown that the macro- 
scopic strain equal to the volume average of the 
microscopic strain and the macroscopic stress equals the 
volume average of the microscopic stress. This deriva- 
tion of the macroscopic stress/strain curve for the poly- 
crystal does not need to know the boundary conditions 
of the center block. This approach is applied to the 
analysis of composite of periodic microstructure. The 
heterogenous composite is here transformed into a 
homogenous solid, similar to that used by Dvorak et 
a/.18 Then the macroscopic stress/strain relation of the 
composite is similarly derived by considering the 
composite to be composed of repeated unit cells 
embedded in an infinite medium. In this way, no local 
region or unit cell needs to be isolated and the problem 
of specifying the boundary condition on the unit cell is 
eliminated. 

2 ELASTIC-PLASTIC ANALYSIS OF SINGLE- 
PHASE PERIODIC MATERIALS 

The equilibrium conditions with plastic strain ejj within 
a region ß and on the boundary T have been found by 
Lin and co-workers:22,23 

Cijkieid.j + (-Cjjue&j) + Fi = O in ß (1) 

S" + (Cyk|Cyi7j) = Cijkieki/7j on T (2) 

where the subscript after comma denotes differentiation, 
the repetition of the subscript denotes summation from 
1 to 3, Fj denotes the body force per unit volume along 
the X[ axis, S-' is the surface traction per unit area of the 
surface with normal n, and % is the i-component of 
normal n. The parenthesis^ terms in eqns (1) and (2) are 
here denoted by F\ and Sy, respectively. For isotropic 
elastic materials: 

Cjjki = A<SjjSki + /x(Sjki5ji + (5ni5jk) (3) 

where Sy is the Kronecker Delta, and A and fi are 
Lame's constants. Assuming plastic dilatation to be 
zero, F\ and S? reduce to 

Fi = -2M4J in Q, S? = 2/x^j on T (4) 

Denoting the stress at point x caused by F\ and 5f by 
T-J(X), the residual stress at point x, r*(x), caused by the 
plastic strain is 

t£(x) = t£(x)-2/«g(x) (5) 

Since this solid is considered to be embedded in an infi- 
nite elastic solid of the same elastic constants, the 
equivalent body force due to plastic strain can be con- 
sidered to be applied in an infinite elastic medium.The 
elastic solution due to a concentrated force in an infinite 
isotropic medium has been given by Kelvin,20 from 
which the stress ry at point x caused by a unit con- 
centrated force at point x' along the xk direction is given 
by 

%(x,xO = - 
3      to - *■)(*,• - *p(xk - 4) 

8;r(l - v) 

+ 1 - 2v  Sjj(xk - 4) - Sjkjxj - *j) - 8fr(xi - xj) 

8JT(1 - v) 

(6) 

where v is Poisson's ratio and r2 = (xi — x'i)
2+ 

(XJ — jcj)2 + (xk — 4)2- From eqns (1) and (5), the 
residual stress field due to the plastic strain is 

if (x) = - J Äjjk(x, x')Cklrs< ,(x')dV - Cgue&W    (7) 
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The distribution of plastic strain in the blocks near the 
center block is taken to be identical to that in the center 
block. The residual stress r^(x) at x due to ejj(x') of all 
blocks can be written as 

Tif(x) = ßijkl(X,x'K1(x') (8) 

where ßyki(x, x') is the influence coefficient of the resi- 
dual stress ^(x) due to a unit plastic strain of a unit 
volume at x'. 

Under a uniform stress T? applied to the infinite 
medium, the stress ry of the element with center at x is 
given by 

stress and strain in the solid would vary from point to 
point. The stress in the solid is expressed as 

ry = 15 + ^ = ^,(4;,+^) inß* (13) 

Tij = i* + fy = Cm{e{x + ek\) in n - n*       (14) 

where fy and eki, are disturbance stress and strain, 
respectively. They are due to the inhomogeneity of the 
solid and vary from point to point. If the inclusion n* 
with Cj*k, is replaced by one with Cyki and with extra 
inelastic strain e*, then 

ry(x) = T? + r|(x) = r5 + Öyki(x,xX,("')       (9) v. = qk,(e», + <?kl) = Cm{e°u + eu - *£) in ß*    (15) 

The average stress over the region n denoted by 7y is 
given by 

ru = Tji = tg + ßSkl(xX1(x') (io) 

where the bar denotes the average over the region. 
Equations (8) and (10) give 

ry(x) = 7y + (ßijk,(x, X') - ßijkI(x'))4'.(0 (11) 

Let ßyki(x.x') = ßyki(x,x') - ßyki(x') and writing eqn 
(11) in incremental form, we have 

Ary(x) = A7-J + ßyki(x, x')Aek',(x') (12) 

Here, ßyki(x, x') is the influence coefficient of the aver- 
age residual stress of the element with center at x caused 
by a unit plastic strain in the element with center at x'. 
These influence coefficients satisfy the reciprocal rela- 
tion and form a symmetric matrix. This formulation 
greatly simplifies the numerical calculations of the stress 
and strain increments in the different elements. This 
approach is to be used in the analysis of composites. 

these two inclusions will have the same stress/strain 
relations and their stress distributions will be identical. 
This gives the equivalency of these two inclusions, a 
concept which was first ingeniously introduced by 
Eshelby.24 Eshelby has found stress in an ellipsoidal 
inclusion in an infinite isotropic medium to be uniform. 
But the relation given by eqn (15) is valid for inclusions 
of all shapes and is not restricted to ellipsoidal inclusions. 

Now that the actual inclusion with C*k| is replaced by 
one with Cyki, the solid becomes homogeneous and the 
elastic-plastic analysis of a homogeneous solid as given 
in Section 2 can be applied. This inelastic strain e* will 
be referred to as eigenstrain by Mura to differentiate it 
from the inelastic strain commonly denoting plastic or 
creep strains. 

3.2 Elastic stress and strain fields of composites 
After replacing the inclusion with C*k] by one with Cyki, 
the heterogeneous solid becomes homogeneous. The 
effect of eigenstrain e* in the homogeneous solid is the 
same as that of plastic strain ej-. Therefore, replacing 
e-j(x') by e* in eqn (9), it follows that 

tjj(x) = tg + ßijki(x, x'K,(x') (16) 

3 ELASTO-PLASTIC STRESS AND STRAIN 
FIELDS OF COMPOSITES 

A solid with uniform elastic moduli is referred to as a 
homogeneous solid. If a solid has one or more inclu- 
sions with elastic moduli different from the rest, like a 
composite, this solid is referred to a heterogeneous (or 
inhomogeneous) solid. 

3.1 Equivalent inclusion method 
If a homogeneous solid with elastic moduli Cyki is uni- 
formly loaded, i.e. the boundary traction is 
S? = rfjjj on T, the strain e? is uniform throughout the 
solid. However, if this solid n has an inclusion ß* with 
different elastic moduli C*k, as shown in Fig.  1, the Fig. 1. An inhomogeneous solid with an inclusion SI*. 
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and eqn (11) becomes 

ru(x)=7ij + ajU(x,xX,(x') (17) 

where 7y is the average stress over the region fl. Let Syki 
be the compliance tensor of Cyki, where •S'ijkiTg, = ejj, it 
follows from eqn (10) that 

«§ = 5ijk,rkl - 5yklßk,mn(x>;n(x) (18) 

Similarly, eqn (2) can be rewritten as 

eg + ey - «5 = %nki (19) 

Substituting ry in eqn (17) and e? in eqn (18) to eqn (19), 
it follows that 

«S(x) = e£(x) + Sijk,ßk,mn(x, x')<n(x')        (20) 

while recalling that ßyki(x,x') = öijki(x.x') - ßijki(x'). 
Substituting eqns (18) and (20) into eqn (15), it follows 
that 

where 

ßyk.(x,x'K1(x')=7ij-qk,5yklrr 

ßyk|(X, X ) — CjjmnSmnrsßrskl(x, X ) 

+ qklS(x,x')-ßyki(x,x') 

(21) 

(22) 

Equation (21) gives the solution of the eigenstrain e\ 
under given 7y: 

ej(x') = ßyV'(x, x')(rk, - C^S^T*)       (23) 

Substituting eqn (23) into eqn (17), it follows that 

ry(x) = 7-j + ßyki(x, x')ßk*lmn-'(x, x') 
X (Tmn — ^„„SrspqTpq) 

(24) 

Equation (24) represents the elastic stress field of the 
heterogeneous solid. The macroscopic stress Ty is 
defined as the volume average stress over the block. 
Following eqn (16), 

^ = ^ + ßyk,(x'K,(x') (25) 

where the bar on the top denotes the volume average. 
Solving for r? in eqn (25) and substituting the result into 
eqn (16) gives 

ry(x)=7y + ßyki(x,xXl(0 (26) 

Structures often have high stress concentrations, which 
will cause high elastic local stresses. However, the high 
stresses are relieved through plastic deformation. Most 
materials can allow some developments of plastic 
deformation before they reach their ultimate strengths. 

3.3 Elasto-plastic stress and strain fields 
If plastic strain d~ occurs in the heterogeneous solid, 
eqns (13) and (14) become 

ry=r? + ry = qk,K1+ek,-e^)infi*      (27) 

rü = Ty + fU = cükiKi + eki-4',)infi-ß*      (28) 

Using Eshelby's equivalent inclusion concept, eqn (27) 
becomes 

= CUki(c£|+eki-<|-e£)inn* 
(29) 

The right side of eqn (29) reduces to eqn (27) in ß — ß* 
and hence the right side holds for both £2* and J2 — SI*. 
Equation (26) can be rewritten as 

ry(x) = 7y + ßykl(x, x>k*,(x') + ßijkI(x, x"K',(x")  (30) 

where x' covers £2* and x" covers fi. The same process 
of deriving eqns (18) to (16) can be used with the pre- 
sence of plastic strain. Including the plastic strain term 
in eqn (18) gives 

«g = %|7kl - %,ßijk,(xX,(x') - 5ykIßykl(x")<,(x") 

(31) 

Combining eqns (29) to (31) and noting ßijki(x, x') 
2yki(x, x') - ßyki(x'), it follows that 

eij(x) = eUx) + em + Syk,ßkImn(x, x")e*mn(x") 
(32) 

+ Syk.ßklmn(x,x'Xm(x") 

Substituting eqns (31) and (32) into eqn (28) gives 

[C^S^ß^x, x') - ßijkl(x, x') + qkl5(x, x')K,(x') 

= (Tij - qmnsmnkirkij 

[ß,jki(x, x") - qmn5mnrsßrsk,(x, x")]4',(x") 

(33) 

+ 

where x e J2*, x' covers fi and x" denotes the point 
where ekI(x") occurs. Let the terms in the bracket of the 
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left side of eqn (33) be ßjjk,(x, x'), and the terms in the 
bracket of the right side of eqn (37) be ß£k,(x, x'). Then 
eqn (33) becomes 

Qyji, x'K,(*') = (7-j - qmnsmM rkl) 

+ ^kI(x,x'K,(x") 

Solving for the eigenstrain e\ in eqn (34) in terms of 7y 
and e|j, it follows that 

efä) = ßpf V- x)(rk, - ck*lmnsmnrsr„) 

+ ßi*mn-'(x',x)ßU(x,x>k'1(x") 

where ßjkf'(x',x) is the inverse of ß^,(x,x'). Note 
that eqn (35) reduces to eqn (23) when the plastic strain 
vanishes. Substituting eqn (35) into eqn (30), it follows 
that 

taken from the Military Handbook (5F) Metallic 
Materials and Elements for Flight Vehicle Structures 
published in June 1988. The ultimate tensile strength is 
about 280 MPa (40-0 ksi) and Poisson's ratio is 0-3. 

4.1 Von Mises criterion of plasticity 
We assume the fiber and matrix to be elastically iso- 
tropic and to follow the von Mises criterion of plasti- 
city. The effective stress and strain22 are taken to be 

ffE=vi^j^i=^TI [(Ti' ~T22)2+(T22 ~T33)2 

+ (T33 - r,,)2 + 6(4 + ifj + T2,)]'72 

(40) 

II ""        Xl „II „"   I2  _L IJI a"   Y „" \2 

+ (e';,-e'll)
2 + 6(e'H + e'g+efi)] ,//2   ,   Jil   ,   „"2\l'/2 

(41) 

where 

Tjj(x) = 7y(x) + ßijki(x, x>k,(x)   x e fi      (36) where   ^   is   the   deviatoric   stress   component,   i.e. 
T[. = Tij -jÄjjTkk. The yield stress is assumed to be a 
function of the effective plastic strain, where 

7-j(x) = ra(x) + ßijki(x, x')ßk*,mn-'(x', x") 

(Tmn — CmnpqSpqnrs7rs) 

öijkl(x, X,') = ßijkl(x, X') + ßijmn(x, x") 

ß;nrs-«(x",x'")ßfskl(x'",x') 

(37) 

(38) 

Expressing eqn (36) in incremental form gives 

ATij(x) = A71j(x) + ßijki(x,x')Ae'k'1(x')   xeQ     (39) 

This equation is used to determine the incremental 
plastic strain AeJ^x') as the loading progresses. 

4 NUMERICAL CALCULATION OF A CROSS- 
PLY FIBER REINFORCED COMPOSITE 

This section is to show how the method presented is 
applied to multi-directional fiber-reinforced composite 
subject to elastic-plastic radial and non-radial load- 
ings. The numerical calculations were carried out on a 
(0°/90°) long fiber reinforced composite. The fiber is 
made of boron and the matrix is made of aluminum 
alloy 6061-T6. The method given is applicable to poly- 
mer matrix as well. The fiber volume in this study is 
taken to be 0-5. The geometric arrangement of the 
composite is shown in Fig. 2. Both the fiber and the 
matrix are assumed to be elastically isotropic and to 
follow von Mises criterion of plasticity. The tensile 
strength of Boron is 3-6 GPa (520-0 ksi) and is assumed 
to have no plastic strain. Its Poisson's ratio is 0-20. The 
mechanical properties of aluminum alloy 6061-T6 are 

^(x)=M(x))xefi (42) 

The condition of loading and unloading is expressed as 
the following three cases: 

(a) If orE(x) = or*(x) and ArxE(x) = Acrs(x), then 

^L^!=AK,AK>0 (43) 

(b) If ffE(x) = cr*(x) but A<xE(x) < ACT*(X), then 

AK = 0 (44) 

(c) If«rE(x) <oJ(x), then 

AK = 0 (45) 

Boron Fiber 

Epoxy Matrix 

Fig. 2. Unit cell, V{ = 50%. 
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Writing eqn (42) in incremental form, 

Ao*(x) =/(e£(x))Ae£(x)   x e 12 (46) 

where /'(■) denotes differentiation with respect to the 
argument. Rewriting eqn (40) in incremental form, it 
follows that 

Following a similar procedure using eqn (44) in place of 
eqn (43), for <TE(\) = o-^x), condition (b) above 
becomes: If 

i,u(x)Affj(x) + ^(x)&m(x, X'K,(X)AK(X) 

<   3°E(X) /VEM)AK(X) 
(55) 

A0rE(x) = 2^W^A^    XSfi (47) 

Substituting  eqns  (46)  and  (47)   into  the  equation 
AffE(x) = AorJ(x yields 

T^AT^X) = -aE(x)/'(4(x))A4(x) (48) 

From eqn (37), the deviatoric stress is given by 

r;j(x)=f;j(x) + ß;jkl(x,x'K,(x')   xeß        (49) 

where prime denotes the deviatoric components, i.e. 

r;j(x)=7ij(x)--aijfklt(x) (so) 

g;jkl(x, x') = ßijk,(x, x') - -Sijßmmkl(x, x')        (51) 

Rewriting eqn (49) in incremental form gives 

Ar |,(x) = A f'^x) + e;jk,(x, x')Ae'k',(x')   x e a    (52) 

Substituting eqn (43) into eqn (52), it follows that 

Ar;,.(x) = Af|,.(x) + e;jk,(x, XX,(X')AK(X'),     A* > 0 

(53) 

Substituting eqns (43)  and  (53)  into eqn  (48),  for 
O-E(X) = cf(x), condition (a) above becomes: If 

then 

x£(x)Af £(%) + ifj(x)ß[jkl(x, XX,(X)AK(X) 

[^E(X)] /(C£(X))AK(X) 
(54) 

then 

AK(X) = 0 

4.2 Numerical integration of influence coefficients 
For numerical calculation, the basic block (i.e. unit cell) 
is divided into elements as shown in (Fig. 3). These ele- 
ments are quadrilateral prism elements, and each ele- 
ment is made of two triangular prism elements (Fig. 4). 
These elements are used for numerical integrations of 
eqn (12). They are not for finite element analysis, hence 
they do not need to satisfy the requirements of the ele- 
ments in FEM analysis.26 Since the heterogeneous solid 
is transformed into a homogeneous one using Eshelby's 
method of equivalent inclusion,1 the residual stress field 
in the composite is calculated by using the influence 
coefficients ßijki(/>, q) caused by ekl(#) or e{x(q). 

Including the eigenstrain e^(q) in eqn (11) yields 

'*(/>) = GijkiO, qMM) + e*kl(q)] (56) 

There is a discontinuous change of Cyki to C~kl at the 
interface of matrix and fiber. This jump of elastic con- 

\z 

AK(X) > 0 Fig. 3. Mesh of one-eighth of unit cell. 
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Fig. 4. Triangular prism parallel to the Xj-axis, one of fiber 
orientation. 

stants will induce the eigenstrains, which cause equiva- 
lent surface forces at the interfaces. To represent the 
surface force accurately, thin elements are used. From 
eqn (12), the influence coefficients are represented as 

Qijk\(P, q) = *ijmn(p, -SOCnnkl - JT ( Vp H Kq)Cjjki     (57) 

where 

*«u(p. q) = ~ Y [    f %(x, x')Cmnki'?n(x')dr(x') 
«P |_r, 

dV(\) 

vpn\ p = q 
p¥=q 

ßijklO, q) = A4>ijran5kl + /*(*ijkl + *ijlk) 
1 
.. (CPn Kq)[A<SijSkl + pftfcjji + «a«jk)] 
^ n 

(58) 

Substituting eqn (8) into eqn (57) 

Oijkl = 0,n _ ,A ffijkl - g^n      ^(ftj^kl - «Sjk^il - ^ik^jl) 
8w(l-vr 8JT(1-I>) 

where 

nu(p<i) = -y-\  J 
r,[np 

W(x')dr(x') 

(*; - xj)(*j - Xj)(*k - 4) 

(59) 

dF(x) 

V^,<7) = ^j  |^y^dK(x) (sk-4) 
r,,(x)dr(x') 

Let 

A(p 1   f (*k - 4) 
•"-IU^ dK(x),    A; =1,2,3     (60) 

1   r (XJ - xj)(Xj - xp(xk - 4) 
%<*».*') = -JTJ dF(x), 

(61) 

ij, fc= 1,2,3 

For Isotropie elastic solids, the elastic constants Cyki are Expressing eqns (60) and (61) in cylindrical co-ordi- 
given in eqn (5). Substituting eqn (5) into eqn (57) gives nates, A(p, x!) and Bijk(p, x') are integrated over the 

Ta(MPa) 

(0.0,172.4) : 

(0,0) (698.7,0.0) 

(1) Pure Tension. 

(2) Shear after tension up to 7",, = 698.7 MPa giving shear strain and additional plastic strain. 

(3) Combined tension and shear loading TnIT„ = 25/100. 

(4) Pure Shear. 

(5) Tension after shear up to 7",, = 172.4 MPa giving tensile strain and additional plastic strain. 

Fig. 5. Loading paths. 
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triangular prism element as shown in Fig. 4.27 By this 
way, the influence coefficients Q\$\(p, q) are calculated. 
With the assumption that identical basic blocks are 
repeated in the composite, the incremental plastic strain 
Ae[j(x) and eigenstrain AeJ(x) in the neighboring 
blocks are taken to be the same as those in the center 
block. The sum of the residual stresses due to plastic 
strains and eigenstrains in all those neighboring blocks 
is given in eqn (30), and the incremental stress Ary is 
given by eqn (39). This approach satisfies both the 
equilibrium and compatibility conditions. 

As the loading, 7y, increased, the number of elements 
with stress reaching the yielding stress increases. 
These elements are known as the potential active 
elements.  Among  these  elements,  the element  that 

yields AK> O slides and develops plastic strains (Con- 
dition (a)) and other elements that give A/c = 0 will not 
reach yield point (Condition (b)). To find this set 
of yielding elements, the Simplex Method2829 is used. 
This method is especially useful in the calculations 
under non-proportional loadings by the above descri- 
bed method. The isolation of an unit cell and specifying 
its boundary conditions for stress analysis is not 
required. 

4.3 Numerical results 
The fibers and matrix are assumed to have perfect 
bonding. The unit cell of the composite is divided into 
grids for numerical calculations, as shown in Fig. 3. 
The  variation   of the   microstress   and   microstrain 

T, (MPa) 

1250.0- 
(1) 

1000.0— 
T., only       / 

\   /      (5) 

750.0- Jt 
500.0- 

/' . ■              Combined Loading 
/               r„/r,2=ioo/25 

\ 
250.0- Tu after Loading 

r,2to 172.4 MPa 

- Eu 

0.1V 
1     1     1     I     |     I     1     1     1     |     1     t     1     1     |     1     1     1     1     |* 

T» (MPa) 
250.0 

200.0- 

150.0 

0.002 0.004        0.006 0.008        0.010 

(a) 

50.0- 

Ttl after Loading up to 698.7 MPa 
(Additional Plastic Strain El Due to 7",,) 

i i i | i i i i | i i i i i i i i i I i i i i i> 

0.0005       0.0010      0.0015      0.0020      0.0025 

(b) 

Tn after Loading 
T,, to 698.7 MPa 

T,2 only 

Combined Loading 
r„/rl2= 100/25 

T„ (MPa) 
1250.0- 

1000.0- 

750.0- 

500.0 

250.0- 

Ea 

0.0 
~i  i  i  i  I  I  i  i  i  [  I  i  i  r-]  I  I  I  I  I  I  I  i i  r* 

0.005 0.010        0.015 0.020        0.025 0.0 

Tn after Loading Tu to 172.4 MPa 
(Additional Plastic Strain Ef-, Due to 7",,) 

£,p, 
i i i | i i i I i i  i | i i i I i i i | n i | i» 

0.002    0.004     0.006     0.008     0.010     0.012 

(c) (d) 

Fig. 6. Macroscopic stress/strain relationship under different loadings. 
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components in the fibers and matrix under five different 
proportional and non-proportional loadings as indi- 
cated in Fig. 5 are evaluated. These stress and strain 
components are used to calculate the effective stress and 
the effective plastic strain from which the first failure 
mode can be identified. 

Under these five loading conditions, the macroscopic 
stress, 7jj, and strain, Ey, are calculated from the corre- 
sponding microscopic stress and strain fields and are 
plotted in Fig. 6. For the cases with small strain-hard- 
ening, the variation of the effective stress is much less 
than that of the effective plastic strain. Hence, the 
effective plastic strain instead of the effective stress are 
plotted. Figure 7 shows the case of pure tension loading 
Tn = 906-3 MPa and Fig. 8 shows the case of pure 
shear loading Ti2 = 180-8 MPa. 

5 CONCLUSIONS AND DISCUSSIONS 

This paper provides a micromechanical analysis of fibre- 
reinforced cross-ply composite under incremental com- 
bined axial and shear non-proportional loadings. In the 
present method, the inhomogenous composites are 
transformed into homogenous solids using Eshelby's 
equivalent inclusion method, i.e. an extra eigenstrain's 
e*- is introduced. This transformation was used by 
Dvorak et a/.18 in their analysis of unidirectionally 
reinforced composites. After the transformation, the 
stress fields caused by plastic strain and the eigenstrain 
are calculated using Kelvin's solution of the displace- 
ment field caused by a body force F\ in an infinite elastic 
solid. There is no need to isolate a "unit cell" from the 
bulk of the periodic composite and the difficulty of 

Matrix 

Fig. 7. Effective plastic strain distribution at interfaces under tension Tu = 906-3 Mpa and En = 0 0059. 
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Matrix 

Fig. 8. Effective plastic strain distribution at interfaces under shear Tl2 = 180-8 Mpa and El2 = 00049. 

defining appropriate boundary conditions on the unit 
cell commonly required in the micromechanics finite- 
element method is eliminated. 

Fibre reinforced composites have many possible fail- 
ure modes such as fibre breakage, matrix cracking, 
fiber/matrix debonding, compression buckling in fibres, 
etc. The analysis presented here is mainly for the com- 
posites before any of these failures occurs. However, 
from the microscopic stress and strain fields, we can 
determine the loading, at which the first failure mode 
starts. The numerical results leading to the first failure 
mode should guide us in preventing or delaying the failure. 

Highly localized plastic strain generally does not 
cause global failure. As pointed out by Clyne and 
Withers30 that the overall yield stresss of composite is 
governed not so much by localized yielding, but rather 

by the attainment of an average plastic deformation 
sufficient for the global yielding. The approach pre- 
sented in this study is to calculate the load to cause the 
spread of the plastic zone to a greater area. The global 
yielding will indicate the start of a failure mode. The 
plastic strain intensity and the extent of the plastic zones 
at different stages of loading will show the damage 
levels as well as the residual strength of the composite. 
Since structures are generally designed for final (global) 
failure, these damage levels in composite materials can 
be used in design of the composite structures. This 
approach can also be applied to the analysis of compo- 
sites with thermal strains, as shown by Bigelow31 and 
other inelastic strains. 

Nigam et al.32 have performed experiments in elastic- 
plastic behavior of an uni-directional fiber reinforced 
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composite. The present derivations can be simplified for 
unidirectional fiber composites. Micromechanic analysis 
of the composite will be performed and the calculated 
results will be compared with the experimental data. 
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Abstract 

Displacement of dislocations in metals causes plastic strain which is often highly localized and produces fatigue bands under 
cyclic loadings. Inside these bands, highly concentrated dislocation pile-ups develop at the grain boundary, causing severe resolved 
shear stress exceeding the critical shearing stress. This excessive stress is relieved either by nucleation of crack at the grain 
boundary or by forming another fatigue band in the neighboring crystal. Micromechanic analyses were performed on a fatigue 
band in a most favorably oriented crystal and an adjacent crystal with a slightly different orientation. Two cases were analyzed: 
(1) The most favorably oriented crystal with a sliding direction making 45° with the free surface in an aluminum polycrystal; and 
(2) Two adjacent crystals with sliding directions parallel to the free surface of a copper polycrystal subject to variable loadings. 
Results show that the amount of slip that propagates across the grain boundary reduces rapidly with the difference in orientations 
between the two crystals. In (2), two sequences of loadings were calculated: one is a low-amplitude loading followed by a 
high-amplitude loading (LH) and the other is a high-amplitude loading followed by a low-amplitude loading (HL). The LH 
sequence shows that the low-amplitude loading has no significant effect on the deformation in the subsequent high-amplitude 
loading. On the other hand, in the HL sequence, the high-amplitude loading has significant effect on the deformation in the 
low-amplitude loading. All these analytical results agree well with experimental observations. © 1998 Elsevier Science S.A. All 
rights reserved. 

Keywords: Cyclic loading; Plastic strain; Misorientation of adjacent crystals; Crack initiation 

1. Introduction 

Single crystal tests show that under loading, slip 
occurs along certain directions on certain planes. This 
slip depends on the resolved shear stress and is indepen- 
dent of the normal stress on the sliding plane. The 
dependence of slip on the resolved shear stress, known 
as Schmid's law, had been shown by Parker [1] to hold 
also for cyclic loadings. When a cyclic loading is ap- 
plied to a polycrystal, the individual grains begin to 
show fine slip markings. As the loading continues, some 
of these lines intensify, forming persistent slip bands 
(PSBs). The intense slip bands have been shown to be 
the source of subsequent fatigue cracks. Plastic strains 
are concentrated in these bands and the macroscopic 
plastic strain depends on the slip of all bands in all 

* Corresponding author. Tel.:   +1  310 8251679; fax:   +1  310 
2062222. 

1 Current address: Universal Analytic Inc., Torrance, CA, USA. 

crystals. Ductility of the metal (i.e. the amount of 
deformation the metal can sustain before crack ini- 
tiates) depends on the amount of all localized plastic 
strains and therefore the spread of plastic strain from 
one crystal to another has important effects on the 
ductility of metals. 

Plastic strain in a slip band is due to displacement of 
dislocations. When a pile-up of dislocations pushes 
against a grain boundary, the leading dislocation is 
acted upon not only by the applied stress, but also by 
the interactive force produced by other dislocations in 
the pile-up. Thus a concentrated force (proportional to 
the applied stress and to the number of dislocations in 
the pile-up) develops at the leading dislocation. When 
the pile-up contains many dislocations, an extremely 
high resolved shear stress develops at the forefront of 
the pile-up at moderate applied stress. This high re- 
solved shear stress can initiate yielding in the neighbor- 
ing crystal or nucleate a crack at the grain boundary 
[2]. 

0921-5093/98/$ 19.00 © 1998 Elsevier Science S.A. All rights reserved. 
Pi7S0921-5093(97)00692-8 
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Fig. 1. Polycrystal with a fatigue band across grain boundary. 

Surface grains are the most likely locations for fa- 
tigue crack initiation in metals and alloys of high 
purity. However, in engineering components made of 
commercial materials, fatigue cracks initiate both at the 
surface and in the interior [3]. Fatigue crack initiation 
in wavy slip single-phase materials was previously be- 
lieved to occur transgranularly by slip-band cracking in 
PSBs at low amplitude of loadings and intergranularly 
at high amplitude of loadings [4]. However, Mughrabi's 
recent work [5-7] on copper polycrystal fatigued at 
constant plastic strain amplitudes at room temperature 
has shown that cracks also initiate at grain boundaries 
in high-cycle (low amplitude) range and were induced 
by PSB's impinging on the grain boundary. Figueroa 
and Laird [8] have shown in their copper polycrystals 
fatigue tests that grain boundaries provide the preferen- 
tial sites for crack initiation in both high and low strain 
amplitude tests. They have also studied fatigue damage 
under variable loadings. They found that fatigue crack 
nucleation sites at low amplitudes are controlled by the 
localization of plastic strain during the fatigue process 
and thus no major difference is expected in the nucle- 
ation mechanism when the fatigue specimen is subjected 
to constant plastic strain or constant stress. Hence the 
analysis for constant stress is expected to be able to 
explain the crack nucleation occurring under constant 
plastic strain. 

The micromechanic analysis using the ratchet mecha- 
nism developed by Lin [9] has successfully explained 

many experimental observations of fatigue crack initia- 
tion. The same analysis is used in the present study to 
analyze the propagation of fatigue band across the 
grain boundary. Three cases are considered: 

(1) A fatigue band in the most favorably oriented 
crystal at a free surface of a pure aluminum polycrystal 
and an interior crystal adjacent to the surface crystal 
with a slightly different orientation, as shown in Fig. 1. 
Under this configuration, the sliding direction intersects 
the free surface. 

(2) A fatigue band in a most favorably oriented 
crystal and an adjacent crystal of a slightly different 
orientation with slip directions parallel to the free sur- 
face of a copper polycrystal, as shown in Fig. 2. An 
initial strain e\x is assumed to exist in R of the fatigue 
band. 

(3) Two sequences of variable-amplitude cyclic load- 
ings: one is a low-amplitude loading followed by a 
high-amplitude loading (LH) and the other is a high- 
amplitude loading followed by a low-amplitude loading 
(HL). 

2. Fatigue band in crystals with sliding direction 
intersecting the free surface 

Extrusions and intrusions grow monotonically on 
fatigued specimens [10]. Kinematically, an extrusion 
forms when a positive shear strain occurs in a thin slice 
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Fig. 2. Polycrystal with a fatigue band parallel to free surface. 

P and a negative shear strain in a closely located thin 
slice Q (see Fig. 1). All metals have defects which cause 
an initial stress field. The initial stress field, x', favorable 
to this mode of slip (i.e. positive shear strain in P and 
negative in Q) is one having positive shear stress in P 
and negative in Q. Such an initial stress field can be 
provided by an initial tensile strain, e\x in R along the 
slip direction a. Lin and Ito [10] suggested in 1967 that 
the tensile strain e\a in R may be provided by a row of 
interstitial dipoles. 

During cyclic loading (Fig. 1), a tensile loading of a22 

on the polycrystal produces a positive applied stress ra 

in the whole crystal. For T' that is positive in P and 
negative in Q, the resolved shear stress, T'-+ Ta, in P 
reaches the critical shear stress, T

C
, first and causes P to 

slide. This slip causes a residual shear stress zT. Assum- 
ing no strain hardening, the critical shear stress T

C 

remains constant. The plastic strain resulting from this 
slip is taken to be constant along the x3-direction 
(normal to the plane of Fig. 1) and therefore the 
deformation was considered to be of plane strain. 

In the calculation of the residual stress, rr, the anal- 
ogy between plastic strain and applied force was em- 
ployed [11]. The body force per unit volume along the 
.^-direction due to plastic strain e"y in an isotropic 
elastic body is 

■(tekk,i + 2fte"yj) (1) 

where X and p are Lame's constants. The repetition of 
an alphabetic subscript denotes summation and the 
subscript after a comma denotes differentiation with 
respect to the coordinate variable. The equivalent sur- 
face force per unit area along the x,-direction due to 
plastic strain e"y is 
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Fig. 3. Crystallographic direction of a f.c.c. crystal. 

Si = (töi/kk + 2ße"y)tjj (2) 

where ö0 is the Kronecker delta and Y\} is the direction 
cosine of the angle between the exterior normal to the 
surface and the x,-axis. 

Since the fatigue band intersects the free surface and 
the polycrystal is assumed to be of fine grain, the 
equivalent forces are considered to act in a semi-infinite 
solid. Melan [12] had developed a plane stress solution 
of the stress field due to a point force applied in a 
semi-infinite plate and his solution was later modified 
by Tung and Tung and Lin [13] for plane strain. Let 
Zy(x, x'k) be the stress at point x due to a unit force 
applied at point x' along the xk-direction. The stress 
components are expressed in terms of the Airy stress 
functions, ^'s, as 

Tll(*> xk) — 

T12(*! xk) — 

where 

82<f>k 

8xY 

d2<Pk 

dxxdx: 

x22(x, xk) — 8
24>k 

dxV 

,    £=1,2 (3) 

<£,(*, x') = - (p + q)(x2 - x2)(0, 4- 92) 

,1    ,            /M    Xi  ,  o   *l*l(*l + *'i) + 2?(^i-^i)ln — + 2p -  

4>2{x, x')= - (p + q)(x2 - x2)(Ö! + 62) 

l, ,NI    -*1      T    X\X\(X2 — x2) 
+ ~ q(*2 - XT) In TT — 2p     (4) X7 

1 
P = 4?r(l - o)' 

q=p(l-2v) 

Xj — (Xi    X\) + (x2    x2) , 

X2 = (x, + x\f + (x2 

Qx = arctan 

92 = arctan 

■x'2f 

X2 x2 

Xi A, 
x2 x'2 

n<d\<n, 

 < 6-, < - 
2~  2_2 \X± -\- xi 

and D is the Poisson's ratio. By dividing the fatigue 
band into N grids, the resolved shear stress, t(m), in the 
mth grid due to a unit plastic strain, e"(n), in the «th 
grid was obtained using the solution given in 
Eqs. (3)-(5). After the occurrence of slip in this band, 
the resolved shear stress is 

T=T'+Ta + T
r (6) 

Let the resolved shear stress exceeding the critical stress 
be referred to as the excessive shear stress, T

E
, i.e. 

TE = T - Tc = T1 + Ta + Tr - Tc 

This excessive resolved shear stress is relieved through 
sliding. Since the deformation is assumed to be of plane 
strain, dzx2,ldx2 = 0. Applying the equilibrium condition 
Xyj = 0 in terms of the (a, ß, x3) coordinates gives 
draa/dxa + dxxßldxß = 0. In this equation, the first term 
is small and thus the second term is also small. Hence, 
the change in x\ß across the small band thickness (from 
P to Q) is negligible. As a result, the slip in P relieves 
the excessive positive shear stress not only in P, but 
also in the neighboring region including Q. This de- 
crease of positive shear stress is the same as the increase 
of negative shear stress, thus causing Q to slide more 
readily during the reversed loading [14]. Similarly, dur- 
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Fig. 4. Plastic strain distribution under cyclic loadings of aluminium. The neighboring crystal is at 40° and the applied stress amplitude of cyclic 
loading is 0.740 MPa. The saturated plastic strain is at 1300 cycles. 

ing the reversed loading, the negative slip in Q relieves 
not only the negative excessive shear stress in Q, but 
also increases the positive shear stress in P, thus caus- 
ing P to slide more readily during the second forward 
loading. The process is repeated for every cycle and 
thus provides a natural gating mechanism to cause the 
alternate slip in P and Q resulting in monotonic growth 
of the extrusion, as observed in experiments. This gat- 
ing mechanism does not require the crystal to have 
more than one slip plane such as a face-centered cubic 
(f.c.c.) crystal, hence is also applicable to other crystals 
such as hexagonal crystals. 

Under cyclic loading, R increases in length as the 
extrusion grows and the elongation causes the initial 
compression in R to decrease. For a f.c.c. polycrystal 

there are 12 slip systems in each crystal. The change of 
direct stress Tm in R causes changes in resolved shear 
stress in all slip systems. When the decrease in compres- 
sion in R becomes large, the applied stress can cause a 
second slip system to have a shear stress reaching the 
critical value and to slide. The plastic strain in the 
second slip system, e"in, caused by slip has a tensor 
component just like e'aa in causing the positive x\ß in P 
and negative x\ß in Q. Therefore, the secondary slip 
system can greatly increase the extent of extrusion. The 
12 slip systems of a f.c.c. crystal are shown in Fig. 3. 
The aß slip system in Fig. 1 is called the primary slip 
system, which is identified as a2 (see Fig. 3). The 
secondary slip system due to the change of direct stress 
Taa under cyclic loading was found by Lin et al. [15] and 
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Fig. 5. Plastic strain distribution under cyclic loadings of aluminium. The neighboring crystal is at 35° and the applied stress of cyclic loading is 
0.740 MPa. The saturated plastic strain is at 1200 cycles. 

Lin [9] to be c3 (see Fig. 3). The secondary slip was later 
observed in the slip band in a recent paper by Zhai et 
al. [16]. The secondary slip can increase greatly the 
plastic shear strain in P and Q [15] and hence is 
considered in the present study. In the calculation, zero 
latent hardening is assumed. 

To study the effect of the misorientation (i.e. the 
difference in orientation) between the surface crystal 
and its neighboring crystal on the propagation of a 
fatigue band across the grain boundary, an aluminum 
polycrystal is considered. It is composed of a surface 
crystal with a slip system inclined at 45° and a neigh- 
boring crystal with a slip system inclined at an angle 6 
with respect to the xraxis, as shown in Fig. 1. Many 
cyclic deformation data of aluminum single crystals 

have recently been reported by Vorren and Ryum 
[17,18] and Videm and Ryum [19]. For numerical calcu- 
lations, the cyclic loading <T22 was + 0.740 MPa, giving 
an applied shear stress, r*a, of + 0.370 MPa. The initial 
shear stress, t'aß, was assumed to be 3.50 x 10 ~3 MPa 
in P and — 3.50 x 10 ~3 MPa in Q of the surface 
crystal. No initial stress was assumed in the neighboring 
crystal. The critical shear stress was assumed to be 
constant and equal to 0.369 MPa. Poisson's ratio was 
0.3 and the shear modulus JLI was 2.65 x 104 MPa. P 
and Q were 0.01 micron thick and R was 0.1 micron 
thick. The numerical methods used to calculate the slip 
distributions in P, Q and R were similar to that given 
by Lin et al. [15]. The calculated plastic shear strain 
distribution e"aß of the primary slip system at different 
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Fig. 6. Relationship between plastic shear strain and critical shear stress of copper. 

cycles of loading for 6 = 40° (i.e. misorientation of 5°) 
is shown in Fig. 4(a) and that of the secondary slip 
system in this single band is shown in Fig. 4(b). As the 
extrusion grows further with cycles of loading, the 
initial tensile strain in R decreases and eventually van- 
ishes and then the plastic strain in P and Q ceases to 
grow. This plastic strain distribution is referred to as 
the saturated plastic strain. The saturated plastic strain 
occurs at 1300 cycles with the distribution shown in 
Fig. 4. It is seen that the slip strains in P and Q increase 
monotonically with the number of cycles. 

A second case with the inclined angle in the neigh- 
boring crystal of 8 = 35° (misorientation of 10°) was 
also analyzed under the same amplitude of applied 
load. The result is shown in Fig. 5, with the saturated 
plastic strain occurring at 1200 cycles. A comparison 
between Figs. 4 and 5 shows that the plastic strain 
distribution in the adjacent crystal oriented at 6 = 35° is 
much smaller than that at 6 = 40°. These results indi- 
cate that the grain boundary blocks the propagation of 
the fatigue bands across the boundary. 

3. Propagation of a fatigue band with slip direction 
parallel to free surface 

Many experiments have been performed to study 
slips parallel to the free surface. Nabarro [20] discussed 
the crossing of a shear band from one grain to another. 
Mura [21,22] showed the relation between the plastic 
strain and dislocation displacements. Stroh [23] consid- 
ered a dislocation pile-up to represent the shear band 
and used a two-dimensional analysis to study the crack 
initiation in brittle solid. Figueroa and Laird [8] per- 
formed an experiment to study the grain boundary 
effect on fatigue band growth of copper polycrystals. In 
the present study, a micromechanic two-dimensional 
analysis on two adjacent copper crystals with slip direc- 
tion parallel to the free surface (see Fig. 2) was per- 
formed to explain the observed experimental results. 

Hunsche and Neumann [24] have shown that the 

critical shear stress varies with the cumulative shear 
strain of a pure single copper crystal. They found that 
the critical shear stress increases from 32 to 35 MPa 
and then decreases to 32 MPa. To simplify the numeri- 
cal calculation, each crystal in the copper polycrystal 
was assumed to be work hardened to 35 MPa before 
the analysis begins and the critical shear stress was 
dropped from 35 to 32 MPa in a step-wise manner. The 
characteristics are shown in Fig. 6 and applied to the 
following numerical calculations. 

Mecke and Blochwitz [25] conducted an experimental 
study on nickel single crystals under cyclic loading. The 
experiment was performed at room temperature and at 
a constant plastic strain amplitude. The results showed 
that the PSB penetrated across the whole crystal and 
extruded from both sides. In order for the PSB to 
extrude, the slip band must be in compression near the 
extrusion. An initial tensile strain in the central part of 
the PSB will give this compression near both ends of 
the band. In the analysis, an initial tensile strain was 
assumed to vary linearly from a maximum value at the 
center to zero at the two ends of a 20 micron segment 
in the fatigue band (see Fig. 2). This segment was 
divided into a number of grids and each grid was 
approximated by a uniform initial tensile strain. Let 
T],ß(x, e'M) be the resolved shear stress at point x, in the 
oc-ß coordinate system, due to a uniform initial tensile 
strain in a rectangular area centered at the origin, as 
shown in Fig. 2. Consider again that the metal is of fine 
grain, using the analogy of inelastic strain and applied 
force in an infinite medium, the resolved shear stress 
due to e\x in the rectangular area is 

Xuß\X> eccix) — 

1 

ß<c 

In 

+ 

2w(l - o) 

'((a - df + {ß- wf){{a + df + (ß + wf) 
((a - df + (ß + wf)((oc + df + (ß- wf) 

1 

\-2v 
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Fig. 7. Plastic strain distribution under cyclic loadings of copper. The neighboring crystal is at 40° and the applied cyclic loading stress is 
68.7 MPa. The saturated plastic strain is found after 150 cycles. 

+ 

(1 - p)(q - df + ü(ß - wf 
{a-df + (ß-wf 

(l~o)(a + d)2 + v(ß + w)2' 
(a + d)2 + (ß + w)2 (8) 

The initial shear stress fields caused by a collection of 
uniform initial tensile strains were then obtained by the 
use of Eq. (8). The assumed initial tensile strain distri- 
bution causes nearly uniform initial resolved shear 
stress. Thus a uniform initial shear stress of 0.8 MPa 
was assumed in the present analysis. 

Consider a crystal oriented at 45° from the loading 
axis with an adjacent crystal of a different orientation, 
6, as shown in Fig. 2. The polycrystal was loaded under 
alternating tension  and compression.  Following the 

procedure discussed in Section 2, the plastic strain 
distributions in the fatigue bands of the two crystals are 
shown in Figs. 7 and 8. Fig. 7 presents the result when 
the neighboring crystal is oriented at 6 — 40° (misorien- 
tation of 5°), and Fig. 8 presents the result when the 
neighboring crystal is oriented at 9 = 35° (misorienta- 
tion of 10°). These figures show that a small amount of 
the fatigue band propagated across the grain boundary 
when the misorientation is 5° and the fatigue band 
practically stopped at the grain boundary when the 
misorientation is 10°. The difference in crystal orienta- 
tions is generally much greater than what was consid- 
ered in the calculation, and the consideration of 
additional twisting of the boundary will further reduce 
the Schmid factors and thus the applied stress, ra. This 
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Fig. 8. Plastic strain distribution under cyclic loadings of copper. The neighboring crystal is at 35° and the applied cyclic loading stress is 
68.7 MPa. The saturated plastic strain is found after 150 cycles. 

would increase the resistance to the propagation of the 
fatigue band across the grain boundary and thus tend 
to initiate intergranular crack. This seems to agree with 
the observations made by Figueroa and Laird [8]. 

4. Effect of sequence of variable fatigue loading 

Figueroa and Laird [8] in their experimental study 
had shown, in the low-amplitude followed by high-am- 
plitude fatigue loading (denoted by LH loading) on 
pure copper polycrystals, the subsequent cycles at the 
high-amplitude seem to ignore the damage produced 
first at the low-amplitude. Due to the variation of the 
critical shear stress with the cumulative plastic strain of 

copper, where the stress drops from 35 to 32 MPa, if a 
low-amplitude of loading < 35 MPa is first applied, 
this low-amplitude loading is expected to produce little 
plastic strain in the fatigue band. Hence, the present 
micromechanic analysis explains the experimental ob- 
servation of the LH loading. 

Besides the LH loading, Figueroa and Laird [8] also 
performed a high-low (HL) loading and they found that 
the high-amplitude loading has significant effect on the 
subsequent low-amplitude loading. From microme- 
chanic analysis, if a high loading is applied first and if 
the stress has passed 35 MPa, the critical shear stress 
will drop to 32 MPa and hence a subsequent low 
amplitude loading will cause a further increase in plas- 
tic strain. To carry out this study, a numerical analysis 
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Fig. 9. Plastic strain distribution under high-low cyclic loadings of copper. The neighboring crystal is at 35°, applied high-amplitude cyclic loadings 
is 68.7 MPa for 45 cycles, and subsequent low-amplitude is 65.7 MPa. The dotted line represents the saturated plastic strain at constant 
high-amplitude of 68.7 MPa (the same curves as those given in Fig. 8). 

was performed on a HL cyclic loading of the copper 
polycrystal with a 10° misorientation in the neighboring 
crystal. A high-amplitude loading of 68.7 MPa was first 
applied. At 45 cycles, the loading was reduced to 
65.7 MPa. The plastic strain distribution in the band is 
shown in Fig. 9. The subsequent low-amplitude loading 
is seen to cause considerable additional plastic strain in 
the fatigue band. This seems to explain the experimen- 
tal observations of the HL loadings. 

5. Conclusion 

The resolved shear stress in a crystal is very much 
dependent on its Schmid's factor and hence on the 

crystal orientation. Taking the first sliding crystal at the 
free surface as the most favorably oriented crystal, the 
applied resolved shear stress in the adjacent crystal 
decreases rapidly with the misorientation between the 
two crystals. The resolved shear stress in the adjacent 
crystal is generally much less than that in the surface 
crystal. This tends to cause large resistance to the 
propagation of fatigue band across the grain boundary. 
On the other hand, the roughness of the free surface 
caused by the formation of extrusions and intrusions 
introduces stress concentrations, causing crack initia- 
tion in fatigue bands at the free surface before that 
occurring at the grain boundary. 

For the cases of fatigue bands with the sliding direc- 
tion parallel to the free surface, there is no free surface 
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roughness due to extrusions and intrusions. The mis- 
orientation remains to cause the decrease of the re- 
solved shear stress in the adjacent crystal. This causes 
the difficulty of propagating the fatigue band across 
the grain boundary and thus develops intergranular 
cracks as observed in experiments. 

The critical shear stress of a pure copper single 
crystal that contains a drop from 35 to 32 MPa with 
the cumulative cyclic plastic strain seems to have a 
large effect on the fatigue damage in low-high and 
high-low sequences of loadings. A low-amplitude 
loading of less than 35 MPa produces no plastic 
strain in the band and hence has no effect on the 
increase of plastic strain in the subsequent high-am- 
plitude loading. On the other hand, after high-ampli- 
tude loading, the critical shear stress drops to 32 
MPa and a subsequent low-amplitude loading can 
cause additional plastic strain in the fatigue band as 
shown in the analytical calculations. These microme- 
chanic analysis results explain the experimental obser- 
vations. 
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Micromechanics of Fatigue Crack Initiation of Single Crystal 

under Plane Strain 

T.H. Lina, K. Wong", and N.J. Tengc 

^Department of Civil & Environmental Engineering, University of California, Los Angeles 

P.O. Box 951593, Los Angeles, CA 90095-1593 

The micromechanic analysis of a fatigue band in the most favorably oriented crystal at Ae 
free surface of a polycrystal is extended to the analysis of a stngle crystal under plane strain. 
The boundary traction the boundaries of the crystal embedded ,n me polycrystal ar 
removed by applying equal and opposite tractions. The stress field caused by these oppost e 
Sons is analyzed using finite element method. Extrusions on both s.des the of smgle 
crystals as commonly observed is shown in the analytical calculations. 

1. INTRODUCTION 

Single crystals have been used in component parts of turbine engines. These parts are 
subfect to rented mechanical and thermal loadings. It has been found that about 90% of the 
StropJc'failures of these parts are due to fatigue of materials [1]. Hence f****** 
the mechanism of these failures is essential to their reductions. The present study attempts to 
give a method to analyze the fatigue crack initiation of these single crystals. 

Lin 121 and Lin et al. [3] have developed a physical model to analyze the high-cycle 
fatigue crack initiation of a face-centered cubic (f.c.c.) polycrystal. This model is amended to 
analyze the fatigue crack initiation of f.c.c. single crystals. 

Single crystal tests show that under loading, slip occurs along certain directions on certain 
planes This slip depends on the resolved shear stress and is independent of the normal stress 
on the sliding plane. The dependence of slip on the resolved shear stress, known as Schrmd s 
law has been shown by Parker [4] to hold also for cyclic loadings. Imtial defects exist in all 
metals and cause an initial stress field, which gives an initial resolved shear stress field t m 
the metal The shear stress due to applied load is denoted by x°. When this x" combined 
with x' reaches the critical shear stress x< in some region, slip occurs to keep the resolved 
shear stress from exceeding the critical. After unloading, the slip remains and causes a 

residual resolved shear stress field xr. The total resolved shear stress is then 
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T = T"+T/+Tr 

(1) 
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(2) 

is the elastic constants of the metal.   The repetition of alphabetic subscripts 

jord.nate vanable. The equivalent surface force per unit area along ,,-axis has been shown 

Si = CWeuT\j 
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band thickness (from P to Q) is very small. As a result, the slip in P reduces not only the 
positive shear stress in P, but also reduces the same amount of positive shear stress in Q. This 
decrease of positive shear stress is the same as increase of negative shear stress, causing Q to 
slide more readily during the reversed loading [7]. Similarly, the negative slip in Q reduces 
the negative shear stress not only in Q but also in P, thus causing P to slide more readily 
during the second forward loading. This process is repeated for every cycle and thus provides 
a natural gating mechanism to cause the alternate slip in P and Q, resulting in monotonic 
growth of the extrusion. Interchanging the signs of the initial stresses will produce an 
intrusion instead of an extrusion. This gating mechanism does not require the crystal to have 
more than one slip plane such as a fee. crystal, hence is also applicable to hexagonal crystals. 

The build-up of the slip strain e^j, in P and Q is caused by e'aa in R. This e'aa causes an 

initial compression in Ä, which in turn causes positive x'ati in P and negative T'aP in Q. Under 

cyclic loading, the extrusion grows and R increases in length. This elongation causes the 
compression in R to decrease. There are 12 slip systems in a fee. crystal. The change of 
direct stress iaa in R causes changes in resolved shear stress in all slip systems. When the 

decrease in compression in R becomes large, the applied stress can cause a second slip system 
to have shear stress reaching the critical value and slide. The plastic strain e^ caused by slip 

in this secondary slip system has a tensor component just like e'aa in causing the positive and 

negative x^p in P and Q, respectively. The occurrence of the secondary slip system was 

recently clearly observed by Zhai et al. [10]. The 12 slip systems of a f.c.c. crystal are shown 
in Figure 2. The aß slip system in Figure 1 is called the primary slip system, which is 

identified as a2 system in Figure 2. The secondary slip system due to the change of direct 

stress xoa under cyclic loading was found by Lin et al. [3] to be c3. The plastic strain e'^ due 

to the slip has a tensor component e'^, which induces an equivalent force component F3. The 

presence of F3 requires the modification of the plane strain solution. A similar problem was 
shown in the analysis of prismatic bars by Lekhnitski [11] and is referred to as the generalized 
plane strain problem. This problem is defined as 

M, =«,(x1,x2)   ,    1 = 1,2,3 

The stress in an isotropic elastic body is given as 

T,y = 2u ^»e+y(«>J+«Jj) l + 2u 

(4) 

(5) 

where 0 = M, , + u2,, u is the shear modulus, and u is the Poisson's ratio. 
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2. METHOD OF ANALYSIS 

To analyze the fatigue band in a single crystal under generalized plane strain consider 
acrystal embedded at a free surface of a polycrystal under alternate tension and compression 
rne sliding direction and the slip plane make 45° with the free surface and the loading axis 
(see Figure 1). The solutions of the plastic strain distributions in the fatigue band of the 
polycrystal have been shown by Lin et al. [3]. Melan [12] has given a plane stress solution of 
the stress field due to a given loading on a semi-infinite plate. His solution has been modified 
by Tung and Lin [13] for plane strain. This plane strain solution is then generalized to include 
the generalized plane strain deformation. Let xs(x,x'k) be the stress at point x due to a unit 

force applied at point x'along the xk -direction. The stress components are expressed in 
terms of the Airy stress functions, (j>t 's, as 

..,    #* hiM) = -jrr  ,    xa(x,xi) = —f  ,    T12(x,xi) ^_32** 
dxf    '    "l2 

dxtdx7 

Tn(x,x;) = T23(x,x;) = 0   ,     T„(x,x;) = -U(Tll(x,li) + Ta(x,Xi))   ,       k = 1,2 

T1I(X,X;) = T22(X,X;) = T,3(X,X;) = TI2(X,X;) = O , 

dx, 

where 

* = 3 

i(x,x') = -(p+?X,2-^)(e,+02)+' (Xi_x;)Ini+2p£!fiiCs±fi) 

♦,««,«•) = -{p + q){Xl -x-Xe, +02) + ^(x2 -*2)ln^-2p^^^l 

«j>3(x,x') = ! 2 

and 

47t 

? = p(l-2u)  , 47t(l-u)   ' 

6, = arctanf ^fJ  -7t<G,<7t ,   02 = arctanf ^^]  - * 
vxi-xi^ Kx.+x'J      2 

(6) 

(7) 
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(9) 
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Equations (6) and (7) give the residual stress field, T
r, in the surface crystal embedded in 

the polycrystal.   This analysis also gives surface tractions on the grain boundaries (see 
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Fieure 1)   In a single crystal, the surface tractions are zero, and hence must be removed by 
applying equal and opposite tractions on the boundary.  The stress field caused by the equal 
S opposite tractions is here solved by finite element method (FEM).  Plastic strain occurs 
only in the fatigue band.  The fatigue band is divided into a number of grids.  The plastic 

strain in a grid in the left half of the crystal is denoted by efL) and in the right half by e»    . 
The solution of the stress field in Figure 3(a) is the sum of the solution of Figures 3(bX(c), 
and (d). Figure 3(b) gives uniform stress. The stress field caused by plastic strain, ef   , is 
solved by the semi-infinite solid solution with the free surface at the left, as shown in 
Fteure 4   This solution satisfies the condition of zero traction at the free surface and gives 
surface tractions on the right, top, and bottom planes (see Figure 4(b)).  These tractions are 
removed by applying equal and opposite tractions as shown in Figure 4(c). The stress field 
due to the loading in Figure 4(c) is solved by FEM. With the plastic strain grid in the left half 
of the crystal, the equivalent forces induced by the plastic strain is relatively far from the 
considered crystal boundaries, and hence the variation of surface traction along the boundary 
is small and the grids of the FEM does not need to be very fine. This will facilitate the FEM 
solution. Similarly, for the solution of Figure 3(d), the slid grid is in the right half. The free 
surface of the semi-infinite solid is taken to be at the right side. The initial strain ej has the 
same effect as the plastic strain, so the procedure for solving the residual stress field can be 
applied for solving the initial stress caused by initial strain in the fatigue band. This gives a 
method to calculate the influence coefficient of the stress in the mth grid due to a unit inelastic 
strain (plastic strain and initial strain) in the nth grid. The resolved shear stress x istfie sum 
of the initial stress t', the applied stress T", and the residual stresses, Tr(u and xr(R).  This 
sum is equated to the critical shear stress, tc, and the incremental plastic strain distributions at 
different stages of loading are obtained. 

3. EXPERIMENTAL OBSERVATIONS 

Mecke and Blochwitz [14] observed the subgrain displacement in single nickel crystal 
under cyclic loading. These experiments were carried out under constant plastic strain 
amplitudes at room temperature. It is shown that the PSBs have penetrated across the whole 
crystal and extruded out on both sides as shown in figure 5. The case with extrusion 
protruding on one side and intrusion on the other side was not observed. Basinski et 
al [15 16] tested copper single crystals at a constant plastic strain amplitude at room 
temperature under cyclic loadings. In these tests, both extrusions and intrusions are observed. 
Zhai et al. [17,18] performed fatigue experiments on aluminum single crystals under constant 
cyclic stress amplitude. Again, both extrusions and intrusions were observed on the free 

surfaces. 

iedded in 
ries (see 
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A PHYSICAL METHOD OF FATIGUE CRACK INITIATION IN SINGLE 
CRYSTAL 

T.H.Lin*, N.G.Liang*, K.K.F.Wong** & N.J.Teng* 

Single crystal superalloys have been developed to eliminate grain 
boundaries, which are susceptible to cause grain corrosion, 
cracking and large creep deformation. These single crystals are 
used in turbine blades. The predicting fatigue life of the crystals 
is needed. Large amount of single crystal test data are available, 
but there seems to lack a general sound theory to correlate them. 
The present paper attempts to take these test data as guide to 
develop a physical mechanism of this crack formation. 

LOCALIZATION OF PLASTIC STRAIN AND FATIGUE RATCHET 
MECHANISM CAUSED BY STRESS FIELD 

Consider a thin slice of metal of a uniform rectangular cross-section experiencing a 

uniform plastic shear strain en in an infinite isotropic elastic medium as shown in Figure 
1(a). Imagine that we cut this slice out, see Figure 1(b), and apply a uniform shear stress 

-2G en, where G is the shear modulus, to restore the slice back to the original shape and 
size before the occurrence of the plastic strain and then welded back to the medium. 
Since there is no such stress applied, it is relaxed by applying an equal and opposite force 

of 2Ge12 per unit area of the boundary of the slice as shown in Figure 1(c). Denoting the 

stress field caused by the boundary force as r* , the stress field due to the uniform plastic 
strain is then 

Tr
v=T'v-2Ge'a (i) 

The stress field caused by en in this slice is readily calculated. The resolved shear 
*   University of California, Los Angeles 
**Nanyang University, Singapore 

W 
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stress along x2 -axis has been found (Lin, 1991 and Lin et al, 1989) to be 

T   = 
4Genw 

2 

-1 

W) 2+l]2 

(2) 

The relief of shear stress x\ is propotional to e,"2l — . For a finite value of x\, e12 
w 

has to be very large since — I is very small. This explains the formation of the localized 

plastic strain to give a shear band under a monotonic loading. The above equation also 
gives a negligible variation of this residual stress across the thickness. This provides a 
natural fatigue gating mechanism as explained later. 

Forsyth and Stubbington(1955) discovered that thin ribbons protruding out of the 
surface of fatigue specimens. These protruding ribbons are known as extrusion. Negative 
extrusion, called intrusion were also observed. Based on these observations, a physical 
model of fatigue crack initiation was proposed. This model is shown in Figure 2. The 
formation of an extrusion requires a positive shear strain eafl in P on the top and a 

negative shear strain in Q on the bottom of the extrusion R, Figure 2(c). This can be 
caused by a positive initial resolved shear stress r' in P and a negative initial stress in Q. 
This system of initial resolved shear stress in a segment can be caused by a variation of 
compressive stress in R, as shown in Figure 2(b). 

Consider the segment ABCD in Figure 2(b) having an initial tensile strain e'aa ; i.e., 

this segment has an initial length longer than the slot. Imagine that this segment were cut 
out and compressed to the same length as the slot, and then welded back to the slot under 
this imaginary compression. Since there is no such compression, this compression must 
be relieved by applying an equal and opposite force. This produces a compressive stress 
xm on the segment at the free surface, which pushes the segment out of the free surface, 

creating an extrusion. Hence a set of positive shear stress in P and negative in Q is 
produced by an initial tensile strain in R. This initial tensile strain can be provided by a 
row of interstitial dipoles (Lin, 1992; Mughrabi, 1981). 

p ATfHF.T MECHANISM 

With an initial tension in R (Figure 2), the initial shear stress in P, T'P , is positive and that 

of Q, T'Q , is negative. The shear stress due to the applied load on is the same in the 

whole crystal, thus x" = XQ = r°. Due to the negligible variation of shear stress across 

the thickness, x'f = xr
Q = xT. Consider the following sequence of loadings : 
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1. First Cyclic Forward Loading (r° > 0): P slides, t[j- < 0. Therefore, 

TP = ri
p + ra + r[f = rc 

TQ = T'Q + ra + r\f > -rc 

2. First Cyclic Reverse Loading(r" < 0):   Q slides, r[r > 0 . Therefore, 

ri, = r; + ra+r17 + r,r
r<rc 

TQ = T'Q+Ta+T{f+Tr
lr=-Tc 

3. Second Cyclic Forward Loading(ra > 0): P slides, v[j- < 0. Therefore, 

TP = T'P + T" + r,7+r,r
r + r27=rc 

re = 4 + ra + r1
r
/ + ri; + r27>-rc 

4. Second Cyclic Reverse Loading (r° < 0): Q slides, x[r > 0. Therefore, 

TP = T[ + T" + fXf + r,r, + r,r, + r,r, < rc 
"i/ 2/ "2r 

rG = rj + r" + r,7 + x[r + r27 + r2
r
r = -rc 

(3a) 

(3b) 

(4a) 

(4b) 

(5a) 

(5b) 

(6a) 

(6b) 

1 

This process is repeated. 

This model has extensive metallurgical supports. An informative experiment on slip 
band formation was made by Wood and Bender(1992). They tested copper circular 
specimens subject to torsion. The deformation in a typical slip band AB of a specimen 
subject to single twist is shown in Figure 3; a,b,c are typical scratches which were 

a,b,c are displaced by a 
shear band under 
monotonical loading. 

Figure 3 Initial straight scratches. 

Cyclic slip band causes 
scratches to displace equally 
forward and backward 

Figure 4 Cyclic slip band causes 
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(a)Sharp X-ray reflection from annealed a-brass. (b)From same specimen as (a) after 

a unidirectional strain 150 x 05" twist. (c)From same specimen as (a) after 1500 
reversals of plastic strain 0.5° twist and showing same reflections as (a). Reproduced 
Sie booKacture", 1959, courtesy of Technological Press, Massachusetts 

Institute of Technology. 
Figure 5 X-ray diffraction-patterns 

riral A slverelv slid line with positive shear such as P is sandwiched by two less 
ÄÄÄ!^ *ear such as Q. This clearly agrees with the theory 

proposed. 

X rav reflection patterns of cyclically loaded specimens retain the discrete spots like 
thoSeS, mSsfssee Figure 5). This is because me positive;*-^» JJJj*1 

hv the nerative slip in Q. The stress field and lattice strain is small m the bulk of this 
„?e£ 5Tmonot^c loadings, the slip in all slip ^ ««^-£XSS" 
Significant average plastic strain and hence an appreciable lattice strain m the bulk 
the metal. This clearly agrees with the proposed theory. 

Single crystals are traction-free on all transverse surfaces as shown in Figure 6. The 
stres caused by a fatigue band varies along three axes. The analysis require three 
SS^^Tfo reduce the large amount of computation, boundary e ement 
SJhas'eln use^Seated hyLesis loops for stress-controlled loadings a* 

shown in Figure 7. 
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Figure 6 Geometry of the Single Crystal Figure 7 Hysteresis Loops of Stress-Strain 

This model has been found to be able to explain many other metallurgical 
observations such as the secondary slip(Zhai et al, 1996), the effect of grain size, 
mean stress etc(Lin,1995). It is hoped to develop this model to give a more 
general fatigue theory for metals. 
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Grain boundaries are susceptible to cause boundary corrosion, cracking, and creep 

deformation. Single crystals are presently used in turbine engines. A micromechanic analysis is 

shown to explain the occurrence of highly localized plastic strain in the slip band known as the 

shear band in metals under a monotonic loading. Based on the prior analyses of fatigue bands 

in polycrystals, a micromechanic analysis of a single crystal under plane deformation is 

developed. Bauschinger effect and hysteresis loops of these single crystals were calculated and 

shown. The calculated results agree generally with experimental observations. 

1 Introduction 

Single crystal nickel based superalloys have been developed to eliminate the grain 

boundaries which are susceptible to cause grain boundary corrosion, cracking, and creep 



deformation (Walker and Jordan, 1989). These single crystals are presently used in turbine 

engine parts. The prediction of fatigue life of these single crystals is of both scientific interest 

and practical need. This paper, based on the extension of the micromechanic high-cycle fatigue 

analysis of a face-centered-cubic (f.c.c.) polycrystal, gives a method to analyze single crystals 

under cyclic loading in plane deformation. This analysis is first shown to explain the formation 

of shear band under a monotonic loading, then to explain the growth of fatigue band in a 

polycrystal under a cyclic loading, and finally gives the analysis of fatigue band in high-cycle 

fatigue (HCF) of a single crystal under plane deformation. 

2 A Micromechanic Theory of Fatigue Crack Initiation 

Initial defects always exist in metals and cause an initial stress field x'. During loading, 

when the resolved shear stress in some region reaches the critical shear stress xc, slip occurs. 

After unloading, this slip remains and induces a residual shear stress xr. Denoting the resolve 

shear stress caused by loading by x", the total resolved shear stress is then 

x = x''+x°+xr (1) 

The governing condition to initiate or continue sliding is to have the resolved shear stress equal 

to the critical shear stress, i.e., 

x = xc    ,     slip occurs (2a) 

x < xc    ,     no slip (2b) 

(i)       Role of Microstress Field on the Formation of Fatigue Band 

When a piece of metal is uniformly loaded, shp lines appear on the surface. These slip 

lines are the results of highly localized plastic deformation. This raises the question of why the 



plastic strain is so heterogeneous. To explain this highly heterogeneous plastic deformation, the 

micromechanic shear stress field due to a uniform plastic strain e"n in a thin slice (see Figure 1) 

in an isotropic infinite medium is analyzed. This analysis gives the residual shear stress (Lin, 

1992) along Jt,-axis as 

r    A\Jue'nwd x2-d2-w2 

x  =■ (3) 
Tt(l-U)  (w* +(X] + df) (w2 +(*, -df) 

This xr is positive outside the slice. Hence the width 2d of this slice tends to increase. This 

explains why in general, a slip band rapidly widens, covering the whole crystal. Along the 

x2 -axis, this analysis gives a residual shear stress as 

Tr = 4ne,><* 
7t(l-u) 

(x V 
u (4) 

The thickness 2w is generally very small and approaches zero. The plastic strain e"2 required to 

yield a finite value of xr has to be very large. This explains why the highly localized plastic 

strain occurs in thin slip bands in single phase metal under uniform loading. Hence, the 

combination of Eqs. (3) and (4) explains the formation of shear band under a monotonic loading. 

Equation (4) not only shows the large plastic strain in the shear band, but also gives the 

negligible variation of the residual shear stress across the thickness. This is referred to as the 

continuity of the resolved shear stress field. This is important in explaining the ratchet 

mechanism in fatigue band, which will be explained later. 

(ii)      Fatigue Band Model 

Under cyclic loadings, slip lines appear on the surface (see Figure 2).  After removing 

these slip lines by electro-polishing and recycling, original lines reappear.  These slip lines are 



known as persistent slip bands (PSBs), which are the favorable sites of crack initiation. In 

1950's, thin ribbons protruding out of fatigue specimen surface were discovered (Forsyth and 

Stubbingtion, 1955). These ribbons are known as extrusions. Negative extrusion, called 

intrusions, were also observed (see Figure 3). Based on the hints supplied by these observations, 

a physical model was developed for HCF crack initiation. 

The physical model of fatigue crack initiation is shown in Figure 4(a). The extrusion or 

intrusion is represented by R in this figure. The formation of an extrusion requires a positive 

shear strain e£p in P on the top and a negative shear strain in Q on the bottom of the extrusion R. 

This can be caused by a positive initial shear stress x' in P and a negative initial shear stress -t' 

in Q.  This system of initial resolved shear stress in a segment can be caused by a change of 

compressive stress in R, as shown in Figure 4(b). 

Consider the segment ABCD in Figure 4(b) having an initial tensile strain e'aa; i.e., this 

segment has an initial length longer than the slot. Imagine that this segment is cut out and 

compresses to the same length as the slot, and then is welded back to the slot under this 

imaginary compression. Since there is no such compression, this compression must be relieved 

by applying an equal and opposite force. This produces a compressive stress xaa on the segment 

at the free surface, which pushes the segment out of the free surface, creating extrusion. Hence a 

set of positive shear stress in P and negative in Q is produced by an initial tensile strain in R. 

This initial tensile strain can be provided by a row of interstitial dipoles (Lin, 1992; Essmann et 

al, 1981). 



(iii)     Ratchet Mechanism 

With an initial tensile strain el
aa in R (see Figure 4), the initial shear stress in P, x'p, is 

positive and that of Q, x'Q, is negative. The shear stress due to the applied load a22 is the same 

in the whole crystal, thus x"P = x"Q = x". Due to the continuity of the residual shear stress field as 

given by Eq. (4), xr
p =xr

Q=xr. The relief of the resolved shear stress is practically constant 

across the thickness of the slice. The regions outside the slice did not slide when the slice did. 

This indicates the initial stress in these regions was less than that in the slice. After the slice 

slides, the resolved shear stress would be still less than that in the slice and hence is still lejäss 

than the critical shear stress and remains unslid (Lin, 1991). Consider the following sequence of 

loadings: 

/.  First Cycle Forward Loading (xfl >0):   P slides, x\f <0, where the subscript "If 

denotes the first forward loading. Therefore, 

xp =x'P+xa +x[f =xc (5a) 

Xß=T'ß+X0
+x;/>-TC (5b) 

2. First Cycle Reversed Loading (x" < 0): Q slides, x\r > 0. Therefore, 

Tp=x,
i)+T0+T^+^r<-cc (6a) 

xß=xß+xfl
+x;/+x;r=-x' (6b) 

3. Second Cycle Forward Loading (x° >0): P slides, xr
2f <0. Therefore, 

xP=xp+x°+x[f+x[r+xr
2f=xc (7a) 

xß=xß+x0+x;/+x^+x2/>-xc (7b) 

4. Second Cycle Reversed Loading (x° <0): Q slides, xr
2r > 0. Therefore, 



XP=TP+X" + x\f+x[r+xr
2f+xr

2r <xc (8a) 

XQ = Tg + X" + X\f + X\r + Tr
2/ + Tr

2r = -TC (8b) 

This process is repeated. A typical numerical result of the plastic strain distributions in P at 

different cycles of loading of the surface crystal is shown in Figure 5. It is seen that P always 

slides in the positive direction and Q in the negative direction. The magnitudes of these slips and 

hence the extrusions are monotonically increasing. 

(iv)     Secondary Slip 

The build-up of the slip strain e£p in P and Q is caused by el
aa in R. UR were cut out, 

the free length of R would be longer than the slot by an amount known as the static extrusion 

(Mughrabi et al, 1983). The e'aa causes an initial compression in R, which in turn causes 

positive x„p in P and negative TJ^ in Q.   Under cyclic loading, the extrusion grows and R 

increases in length. This elongation causes the compression in R to decrease. There are 12 slip 

systems in a f.c.c. crystal. The change of direct stress Taa in R causes changes in resolved shear 

stress in all slip systems. When the decrease in compression in R becomes large, the applied 

stress can cause a second shp system to have shear stress reaching the critical value and slide. 

The plastic strain e^ caused by slip in this secondary slip system has a tensor component e"aa, 

just like the initial tensile strain e'aa in causing the positive and negative T^  in P and Q, 

respectively (Lin et al, 1989). Hence with secondary slip, the extrusion can grow considerably 

beyond the static extrusion. The occurrence of the secondary slip system was recently clearly 

observed (Zhai et al, 1996). 



3 Experimental Verifications 

This model has extensive metallurgical supports (Lin, 1992), and two of these supports 

are discussed as follows: 

(i)       Slip Band Formation 

An informative experiment on slip band formation was made be Wood and Bender 

(1962). They tested copper circular rod specimens subject to torsion. The specimens 

were electro-polished and then scratched as markers with a pad carrying 0.5(J. diamond 

dust. Some specimens were subject to alternate torsion and some subject to single twist 

through large angles. The deformation in a typical slip band AB of a specimen subject to 

single twist is shown in Figure 6; a, b, c are typical scratches which were initially straight 

and continuous. It is seen that the single twist causes the scratches above AB to displace 

relative to those below. Figure 7 shows the deformation under cyclic torsion with 

scratches d, e, f and a typical fatigue band DC. It is seen that the cycle deformation 

caused no relative displacement of the scratches left and right of the fatigue band, but 

within the band the scratches have displaced equally up and down producing a zig-zag. 

A severely slid line with positive shear as P is sandwiched in two less severely slid lines 

with negative shear such as Q. This clearly verifies with the theory proposed. 

(ii)      Lattice Straining 

X-ray reflection patterns of monotonically and cyclically loaded specimens are very 

different (Wood, 1956). The later retain the discrete spots like that of annealed metals 

while the former do not (Figure 8). This shows that slip occurrence in alternate loadings 



does not cause lattice straining in the bulk of the metal. Under cyclic loading, the 

positive shear slip lines (like P) are closely located with the negative one (like Q). At 

some distance from the slip lines, the stress field caused by positive slip in P is balanced 

by that caused by negative slip in Q. Hence the stress field and the lattice strain is small 

in the bulk of the metal. Under monotonic loadings, the slip in all sup lines tends to be 

all of the same sign and causes a significant average plastic strain, which causes an 

appreciable stress field and a lattice strain in the bulk of the metal. The above theory 

accounts for the different X-ray reflection patterns of the monotonically deformed and 

cyclically deformed metals. 

4 Single Crystals 

The single crystal nickel-based superalloys have been developed to eliminate the grain 

boundaries, which are susceptible to grain boundary corrosion, cracking, and creep deformation 

(Walker and Jordan, 1989). These single crystals are presently used in turbine engines. The 

prediction of HCF life of these single crystals is of practical need. The following shows the 

analysis of fatigue bands of single crystals. 

(i)       Method of Analysis 

A crystal embedded at the free surface of the polycrystal under alternated tension and 

compression is first analyzed, as shown in Figure 4(a). This solution gives surface tractions on 

the grain boundary. In a single crystal, the surface tractions are zero and hence must be removed 

by applying equal and opposite tractions on the boundary. The stress field caused by this equal 

and opposite tractions is analyzed by finite element method (FEM). 



Plastic strain is taken to occur only in the fatigue band. The band is divided into a 

number of grids. The plastic strain in the left half of the crystal is denoted by efh) and in the 

right half by e~(R). The solution of the stress field in Figure 9(a) is the sum of the solutions of 

Figures 9(b), (c), and (d).   Figure 9(d) gives uniform stress.   The stress field due to e?(L) is 

solved by the semi-infinite solid analysis with the free surface at the left, as shown in Figure 10. 

This solution yields the condition of zero traction at the free surface and gives surface tractions 

on the right, top, and bottom planes (see Figure 10(b)). These tractions are removed by applying 

equal and opposite tractions, as shown in Figure 10(c). The plastic strain in the grid is replaced 

by the equivalent forces (Lin, 1968) and the stress field caused by these equivalent forces is 

solved by FEM. This equivalent force due to efL) is relatively far from the considered crystal 

boundaries and hence the variation of the surface traction on the boundary is small, and thus the 

grids of the FEM do not need to be very fine. This facilitates the FEM solution. Similarly, for 

the grid in the right half of the crystal, the free surface of the semi-infinite solution is taken to be 

at the right side. 

The initial strain ej has the same effect as plastic strain e'(} in causing a stress field, so 

the initial strain can be analyzed in the same way as the plastic strain. This gives a method to 

calculate the stress influence coefficient in the mth grid caused by a unit inelastic strain (either 

plastic strain or initial strain) in the nto grid. The resolved shear stress x equals the sum of the 

initial stress x\ the applied stress x°, and the residual stresses xr(L) + xr(R). Equating the 

resolve shear stress x to the critical shear stress xc gives the incremental plastic strain 

distributions at different stages of loading. 



(ii)      Experimental Observations of Fatigue Bands in Single Crystals 

Mecke and Blochwitz (1980) observed the subgrain displacement in single nickel crystal 

under cyclic loading. These experiments were carried out under constant plastic strain 

amplitudes at room temperature. It is shown that the PSBs have penetrated across the whole 

crystal and extruded out on both sides as shown in Figure 11. The case with extrusion protruding 

on one side and intrusion on the other side was not observed. Basinski et al. (1983 and 1985) 

tested copper single crystals at constant plastic strain amplitudes at room temperature under 

cyclic loadings. In these tests, both extrusions and intrusions are observed. Zhai et al. (1990 and 

1995) performed fatigue experiments on aluminum single crystals under constant cyclic stress 

amplitude. Again, both extrusions and intrusions were observed on the free surfaces. 

(iii)     Numerical Calculations 

The analytical solution developed in previous sections is here applied to analyze the 

single crystal tests. To simplify the calculation, a single fatigue band in the single crystal is 

considered (the grain boundary shown in Figure 4(a) is now a free surface). The analytical 

method can readily be used to analyze multiple fatigue bands in the crystal. Referring to 

Figure 4(a), both P and Q are assumed to be 0.05 um in thickness, and R to be 1.0 um. The 

crystal is fee. and is assumed to be elastically isotropic with shear modulus \i = 50 GPa and the 

Poisson ratio u =0.3. The critical shear stress, T
C
 , is taken to be 200 MPa, and cyclic loading 

x22 = 399.55 MPa. An initial tensile strain was assumed to vary linearly from a maximum value 

at the center to zero at the two ends of a 1.4 mm segment in the fatigue band. This segment was 

divided into a number of grids, and each grid was approximated by a uniform initial tensile 

strain. This assumed initial tensile strain distribution was found to give an initial resolved shear 

10 



stress, x\ quite uniform over each half of the fatigue band. Thus a uniform x' of 0.5 MPa was 

used in the present analysis. The variations of the plastic strain in P and Q along the length of 

the fatigue band at different cycles of loading are shown in Figure 12. 

The widening of a slip band, i.e., the increase of "2d," has been explained in the 

micromechanic analysis (see Eq. (3)). This gives the spread of the fatigue band toward the two 

free surfaces, causing the protruding of extrusion on two sides. If the initial tensile strain in the 

above is replaced by an initial compression strain, intrusions instead of extrusions will occur on 

both sides. The present model seems to explain the observed extrusions and intrusions. 

(iv)     Hysteresis Loops 

This analytical model is used to calculate hysteresis loops of aluminum single crystals, 

with shear modulus |i =26.5 GPa and Poisson ratio u =0.3. The critical shear stress, xc, is 

taken to be 0.369 MPa. A calculated hysteresis loop is shown in Figure 13. In the initial loading 

and unloading curve, the elastic limit in unloading occurs at a positive normal stress, i.e., at 

positive resolved shear stress. This indicates a large Bauschinger effect. The widths of the 

hysteresis loops have been found to decrease with the number of cycles and approaches zero 

reaching the saturation stage of cyclic loading. This agrees with the experimental hysteresis 

loops of aluminum single crystals shown in Figure 14 (Thompson and Wadsworth, 1958). 

5        Conclusions 

For an extrusion to protrude, the shear strain in P has to be positive and that in Q has to 

be negative near the occurrence of extrusion. This requires positive resolved shear stress in P 

and negative in Q. In turn, this requires a compressive stress in JR to push the extrusion out. The 

11 



occurrence of extrusion on both sides of the single crystal implies compression in R on both 

faces. Similarly, for an intrusion to occur on the left side, the shear strain in P must be negative 

and that in Q must be positive. This requires a tensile stress in R to pull the intrusion in. A 

segment in R with an initial compressive strain tends to increase the length of the tensile stress in 

R under cyclic loadings. The spread of the tension in R over the length of the fatigue band will 

result in intrusions on both faces. Initial compression and initial tension may occur in the 

specimens. Hence extrusions on both faces and intrusions on both faces have been observed. 

This single crystal fatigue band analysis is for plane strain, which gives an approximate 

solution for the central length portion of the crystal. To calculate the slip in the second slip 

system near the side faces that was clearly observed, a three-dimensional model is required and 

is being developed. This study is essential to improve the representation of the constitutive 

relation of single crystals and single crystal superalloys, which is important to the design of 

engine parts made of single crystals. 

Acknowledgment 

This work was sponsored by the Air Force Office of Scientific Research (AFOSR), 

USAF, under grant number F49629-96-1-350. The views and conclusions contained herein are 

those of the authors and should not be interpreted as necessarily representing the official policies 

or endorsements, either expressed or implied, of the AFOSR or the U.S. Government. 

12 



Infinite Medium 

*2 

-12 

fD[^ d >\< d H 

Fig. 1    Shear band model. 



(a) after 104 cycles (b) after 5xl04 cycles 

Fig. 2 Slip lines in polycrystalline nickel during two stages of cyclic loading (Kennedy, 
1963). 
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ABSTRACT 

The micromechanic model of an extrusion formation in a polycrystal nnder high-cycle 

fatigne is briefly reviewed. Following the same general approach, and goided by the observations 

on the snbgrain boundary displacement in a single crystal ( Mecke and Blochwitz, 1981 ), a 

»Aeromechanic model of extrusions and intrusions in an aluminum single crystal with multiple 

fatigue bands under stress-controlled loadings is presented. The microstress and strain fields in 

fire crystal are calculated by the boundary e.ement method for the three-dimensional elasto- 

plastic solids. From these micro fields, the macroscopic stress and strain of the crystal at different 

smges of loading are calculated. The nnmerical analysis gives Are changes of hysteresis loop 

shape wim loading cycles. The incremental plastic strain distribution and the incremental residnal 

stress in each cycle depend on the initial shear stresses. Two sets of initial stresses are haken to 

calculate tire hysteresis loops. It shows the dependence of the shape and size of the hysteresis 

tops on the distribntion of initial shear stresses. The size and distribution of persistent slip bands 

(PSBs ) on the front-surface of the present model are the same as those on the side-snrtaee. This 

agrees with experiments ( Zhai, et al.,1995 and 1996 ). Both Are calculated and the experimental 



PSBs on the side-surfaces are concave. The calculated extrusion height and intrusion depth at 

stress saturation seem to agree with the experimental values. This model seems to provide an 

explanation for a number of observations in a fatigued single crystal oriented for single slip. 
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1. INTRODUCTION 

It is estimated that nearly 90% of catastrophic failures of structural parts are due to 

material fatigue ( Puskar and Golovin, 1985 ). The fatigue process of ductile metals may be 

roughly divided into two stages, i.e., fatigue crack initiation and crack propagation. In high-cycle 

fatigue ( HCF ), fatigue crack initiation takes about 80% of the fatigue life, while in low-cycle 

fatigue ( LCF ), the fatigue process is dominated by crack propagation. Fatigue crack initiation 

always precedes fatigue crack propagation. The objective of this paper is to study the 

phenomenon of fatigue crack initiation in aluminum single crystals under HCF, from the 

consideration of the microscopic mechanism and macroscopic responses including hysteresis 

loops. 

Numerous fatigue tests have indicated that persistent slip bands ( PSBs ) are the most 

frequently observed fatigue crack nucleation sites in ductile single crystals ( Basinski and 

Basinski, 1992 ). Cyclic plastic strains are highly localized in PSBs while the matrix between 

PSBs is almost free from plastic deformation. The concentrated cyclic plastic strains in PSBs are 

induced by the intensive generation, movement and interaction of dislocations at the microscopic 

level. Extrusions and intrusions on the free surface of fatigued metals are the most striking 

feature of the formation of PSBs. 

A micromechanic theory of fatigue crack initiation ( Lin, 1991 ) has been proposed to 

model the physical mechanism of both extrusions and intrusions of PSBs in polycrystalline 

metals of face-centered cubic structure. A PSB in a surface crystal is represented by three thin 

slices of P, Q and R, where P and Q are two intensively plastically deformed layers between R 

and the matrix and R is sandwiched by P and Q. The plastic shear strains in P and Q, caused by 

the local cyclic microstress field, either push the material in R out of the free surface to form an 



extrusion or suck it in to create an intrusion. This theory is supported by many experimental 

observations and has been applied to analyze the HCF of polycrystals. 

Mecke and Blochwitz ( 1980 ) observed the subgrain displacement in a ruckle single 

crystal fatigued under constant plastic strain amplitude at room temperature. It is found that the 

PSBs have penetrated across the whole crystal and extruded out on both sides. Recently, Zhai et 

al. ( Zhai, Martin and Briggs 1995 and 1996, Zhai, Martin, Briggs and Wilkinson 1996, Zhai, 

Briggs and Martin 1996 ) have shown a set of very interesting fatigue tests of aluminum single 

crystals under stress-controlled cyclic loadings. The specimen has two special surfaces. One is 

the side-surface containing the active Burgers vector. The other is the front-surface perpendicular 

to the side-surface and has the largest slip steps under fatigue loading. The specimen is loaded in 

equal cyclic tension and compression. The preferred slip system is [Ol 1](111). The PSBs on the 

front-surface are of the same size and distribution as those on the side-surface. It is found that 

many PSBs on the side-surface are concave. 

In this paper, we extend the model of polycrystal fatigue crack initiation ( Lin, 1991 ) to 

the case of an aluminum single crystal under a stress-controlled cyclic loadings of equal 

amplitudes of tension and compression. The microscopic deformations of PSBs on both front 

and side surfaces are quantitatively analyzed. The correlation of hysteresis loops with the 

microstress field in the PSBs is presented. In the following, we first briefly review the theory of 

fatigue crack initiation. Then, the numerical calculation of microstress field by the boundary 

element method for an elasto-plastic three-dimensional body is presented. The gating mechanism 

of P, Q and R is applied to the single crystal. Finally, the numerical results of surface profiles of 

PSBs on both front and side surfaces are compared with the test observations, and hysteresis 

loops are computed and presented. 



2.   MICROMECHANIC THEORY OF FATIGUE CRACK INITIATION 

In this section, we will briefly review the fundamentals of micromechanic theory of 

fatigue crack initiation (Lin, 1991), which constitute the basis of the present study. 

2.1. Gating mechanism provided by microstress field 

The extrusions and intrusions observed on the free surface of a fatigued metal specimen 

are driven by the alternate microstress fields in the PSBs. To illustrate the mechanism, a PSB is 

modelled as a thin slice R sandwiched by two PSB-matrix interface layers P and Q, as shown in 

Fig. 1. A favorable distribution of initial shear stresses is positive in P and negative in Q. Under 

the cyclic loading, plastic shear strains are built up in both P and Q and induce an alternate 

residual stress field in the PSB. Since the resolved shear stress r° in the primary slip system due 

to the applied load an is the same all over the specimen, we have 

Tp=T0=T 

where r° and ra
Q are the resolved shear stresses in P and Q, respectively, due to the applied load 

cr22. The sequence of alternate microstress field, which promotes the extrusion at the free 

surface, is further explained as follows: 

1.  First Cyclic Forward Loading (*" >0): P slides. The residual shear stress in P during the 

first forward loading t[f <0, where the subscript / stands for the forward loading. We 

have 

rP=r; + ra+r1V=rc (la) 



TQ=Ti
Q+Ta+Tr

lJQ>-TC (lb) 

2. First Cyclic Reversed Loading(ra < 0): Q slides and r[rQ > 0, where the subscript r 

stands for the reversed loading. We have 

Tp=Ti
p+Ta+T[IP+T[rP<TC (2a) 

TQ=TQ+Ta+Tr
w+Tr

lrQ=-TC (2b) 

3. Second Cyclic Forward Loading (ra > 0): P slides and rr
2ß> < 0. We have 

Tp=Ti
p+Ta+ Tr

XJp + T[rp + Tr
2Jp = TC (3a) 

TQ=Ti
Q+Ta+ Tr

m + T[rQ + Tr
ljQ > -TC (3b) 

4. Second Cyclic Reverse Loading (r" < 0): Q slides and r[rQ > 0. We have 

TP=Tp+Ta+ tr
XJP + rr

XrQ + tr
2fP + Tr

2rQ < rc (4a) 

TQ=Ti
Q+Ta+ T\p + r[rQ + T2Jp + T2rQ = -TC (4b) 

The critical shear stress rc is here assumed to be constant, i.e., there is no strain hardening or 

softening involved. This process is repeated for each loading cycle, and consequently provides a 

natural gating mechanism. 

As the number of loading cycles increases, the growth of extrusion causes a tensile strain 

and stress in R. This tensile stress combined with other stresses may activate a secondary slip 

system in R. It has been demonstrated that this secondary slip significantly increases the extent of 

both extrusions and intrusions ( Lin, Lin and Wu, 1989). 

2.2. Residual stress influence coefficients 



The calculation of the residual stress field induced by plastic shear strain in the most 

favorably oriented slip systems is essential to quantify the theory of gating mechanism. The 

analogy between inelastic strain and applied forces ( Lin, 1968 ) is used to calculate the stress 

field caused by plastic strain in a semi-infinite solid undergoing a generalized plane strain 

deformation. In computation, the three slices P, Q and R are discretized into a number of 

elements. In each element, the plastic strain is taken either uniformly or linearly distributed. The 

residual stress influence coefficients, which represent the residual stress in an element caused by 

a unit plastic strain distribution in another element or the element itself, are derived analytically 

based on the close-form stress functions ( Lin and Lin, 1974). 

3. NUMERICAL ANALYSIS OF A FATIGUED ALUMINUM SINGLE CRYSTAL 

3.1. Computational procedure 

An aluminum single crystal is treated as a three-dimensional finite body in the present 

study. The previous approach for calculating the residual stress influence coefficients (Lin, 1991) 

is no longer suitable. We use the boundary element method to numerically compute these 

coefficients. The rationale of using the boundary element method instead of the widely used 

finite element method is that the stress components at an interior point of the body are solely 

determined by the boundary displacement and traction, and the plastic strains in the PSBs. Since 

the thickness of a PSB is extremely thin in comparison with the dimension of the single crystal, 

the computation of stresses at points in a PSB by the finite element method either requires 

excessive refinement of the finite element mesh in both the band and its neighboring area, or 



sacrifices the numerical accuracy by using the interpolation and extrapolation based on a coarse 

mesh. 

From the Maxwell-Betti reciprocity theorem or Somigliana equation ( Brebbia and 

Dominguez, 1989 ), we can derive the boundary integral equations allowing plastic strains as 

follows 

CyUjix) = Jii;(x,x')^(x')dr - j"s,;(x,x>7.(x')rfr 
r r 

+ 

where F is the boundary of domain Q, ep
kj the plastic strains, the constant 

f Sv, xeQ 
iJ    1 Sg 12,    x € T and the boundary is smooth 

md*Sj and M . are the boundary traction and displacement, respectively. Kelvin solution w*. and 

its derivatives, S* and a]kj are readily found in test books ( Brebbia and Dominguez, 1989 ). 

To compute the residual stress influence coefficients, we divide the thin slices of P, Q and 

R of a PSB into a number of elements in which the plastic shear strains are taken to be constant. 

The surfaces of the single crystal are also divided into a set of boundary elements. For a unit 

plastic shear strain in an element of the PSB, the algebraic equations of the discretized boundary 

integral equations are solved for the displacements in the boundary elements. The stresses in the 

elements of the PSB can be directly computed from these boundary displacements and the 

prescribed boundary traction. 

3.2. Results of numerical analysis 



The geometry of a single crystal to be analyzed is shown in Fig. 2. The specimen is taken 

to be of pure aluminum with a critical shear stress rc of 0.369 MPa ( 53 psi ) and is loaded 

alternately under uniform tensile and compressive stress with magnitude of 0.9x0.369 MPa. 

In the present analysis, the multiple PSBs are assumed to be 1 urn in thickness and have 5 

urn spacing. The layout of these PSBs is similar to what was observed in the tests by Zhai, et al. ( 

1995 and 1996 ). The average of microscopic plastic strains in the PSBs is taken as the 

macroscopic plastic strain. By this way, we compute the hysteresis loops. 

From Eqns. (1) - (4), the development of residual stresses rr in a PSB depends on the 

distribution of the initial stresses r' in P and Q. Two sets of initial stresses with the same 

average value in each of four segments P, P', Q and Q' (Fig. 1 ) are considered under the same 

cyclic loading: one with a linearly distributed initial stress, giving the hysteresis loops as shown 

in Fig. 3, and the other with a uniformly distributed one, giving the hysteresis loops as shown in 

Fig. 4. It is seen that the one with uniform initial shear stress reaches the saturation value of 

cumulative plastic strain much sooner than the one with linear initial stress. The distribution of 

initial stresses in a specimen is generally heterogeneous. Let r'max denote the maximum value of 

initial stress in a PSB. During the forward loading, when the summation of T'max andr" reaches 

the critical shear stress rc in some region, this region slides and yields the plastic strain. The 

loading amplitude gives the microscopic elastic limit of the specimen. As the forward loading 

increases, more region in the PSBs slides. This gradual spreading of the sliding area makes the 

curved part of the stress-strain curve as shown in Fig. 3. The residual stresses in P and Q are 

negative, thus relieve the shear stress in P while increase the negative shear stress in Q. The 

negative shear stress causes Q to slide more easily in the reversed loading. This is known as the 



Bauschinger effect. Further reversed loading gives the curved part of the negative stress-strain 

curve until the maximum reversed loading is reached. Then the forward loading gives the linear 

stress-strain curve followed by a curved part of the hysteresis loop until the maximum forward 

loading is reached. As explained before, the negative residual stress rr
p is built up in P and the 

positive residual stress vr
0  in Q. These residual stresses induced by the accumulated plastic shear 

strains tend to cancel the initial shear stresses r' in P and Q. As the fatigue cycles increase, the 

area of the hysteresis loop, which represents the strain energy dissipated in one cycle, decreases. 

The changes of hysteresis loop shape proceed along with the decreasing of the growth rate of 

extrusions at the free surface. This process continues until it reaches the saturation state where 

extrusion ceases to grow A similar process occurs when the uniformly distributed initial stresses 

are assumed. In this case, the plastic sliding spreads along the PSB more readily than the case of 

linear distribution. Thus it gives the sharp corners in the hysteresis loops and causes the earlier 

occurrence of the saturation state (Fig. 4 ). 

The extrusion in a PSB induces a tensile stress raa in R. This tensile stress, combined 

with the applied cyclic axial stress ± <r22, may activate a secondary slip in R. This causes R to 

subject to a cyclic stress with a mean static stress, thus creating extrusions and intrusions on the 

side-surface of the single crystal. These extrusions and intrusions have been observed on the 

side-surface of the fatigued aluminum single crystals at the later stage of loading cycles ( Fig. 5 ) 

by Zhai, Briggs and Martin (1996 ). The fatigue tests also indicate that a PSB with an extrusion 

or intrusion on the front-surface continuously extends to the side-surface across the edge of the 

specimen. The present numerical analysis shows that the secondary slip in R causes the 

displacement on the side-surface to be inward. This may explain why the experimentally 

10 



observed PSBs on the side-surface are concave ( Zhai, Briggs and Martin, 1996 ). In the present 

model, both the inward movement of a PSB on the side-surface and the extrusion on the front- 

surface are induced by the displacement in R. Hence, the PSBs on the side-surface are of the 

same size and distribution as the PSBs on the front-surface. The calculated extrusion height on 

the front-surface at saturation exceeds 0.7um, which is favorably comparable with that observed 

by Zhai, et al. ( 1995 and 1996 ). The present theory seems to be able to explain a number of 

experimental observations. 

4. CONCLUSIONS 

The micromechanic theory of polycrystal crack initiation has been applied to the analysis 

of a fatigued aluminum single crystal undergoing three-dimensional elasto-plastic deformation. 

The microstress field due to plastic slip in the PSBs is computed by the boundary element 

method. The quantative modelling of extrusions on the front-surface and inward displacement on 

the side-surface agree with the experimental observations. The secondary slip plays an important 

role in the formation of PSBs. This has been proved not only by fatigue tests but also by the 

present analysis. The hysteresis loops of an aluminum single crystal are computed in the presence 

of PSBs in the specimen. It is found that both the shape of hysteresis loops and the number of 

cycles to reach the saturation are affected by the distribution of initial stresses in the PSBs. The 

linear distribution of initial stresses in PSBs gives the shape of hysteresis loops more similar to 

the test results than the uniform one. 
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Fig. 2 
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Fig. 3 
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Hysteresis loops of a crystal with linearly distributed initial shear stress 
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Fig. 4 
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Hysteresis loops of a crystal with uniform initial shear stress 
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Fig. 5 

SEM micrograph showing PSBs on the front-surface and side-surface and PSBs 
meeting at the edge ( Zhai, Briggs and Martin, 1996 ); reproduced from ACTA 

mater Vol. 44 No.9, 1996. Courtesy of Elsevier Science Ltd. 
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